|
|
Differentialrechnung

Funktionen sind nicht immer linear. Bei nicht linearen Funktionen ändert sich die Steigung der Funktion in jedem Punkt. Wenn Du nun diese Steigung benötigst, um etwas zu berechnen, kommt die Differentialrechnung ins Spiel. In dieser Erklärung erfährst Du die Definition, die Regeln und die Anwendung der Differentialrechnung.

Mockup Schule

Entdecke über 50 Millionen kostenlose Lernmaterialien in unserer App.

Differentialrechnung

Illustration

Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken

Jetzt kostenlos anmelden

Nie wieder prokastinieren mit unseren Lernerinnerungen.

Jetzt kostenlos anmelden
Illustration

Funktionen sind nicht immer linear. Bei nicht linearen Funktionen ändert sich die Steigung der Funktion in jedem Punkt. Wenn Du nun diese Steigung benötigst, um etwas zu berechnen, kommt die Differentialrechnung ins Spiel. In dieser Erklärung erfährst Du die Definition, die Regeln und die Anwendung der Differentialrechnung.

Differentialrechnung – Definition

Die Differentialrechnung ist ein großes Teilgebiet der Analysis, welches sich mit dem Ableiten von Funktionen beschäftigt.

Unter der Differentialrechnung wird die Bestimmung der lokalen Änderung von Funktionen verstanden. Sie beschreibt somit das Änderungsverhalten einer Funktion \(f\) in einem bestimmten Punkt \(P\).

Das Änderungsverhalten kann auch als Tangentensteigung \(m\) bezeichnet werden. Die Tangentensteigung ermittelst Du über den Differentialquotienten.

Als Differentialquotient wird der Grenzwert des Differenzenquotienten für ein immer kleineres Intervall bezeichnet. Mit dem Differentialquotienten berechnest Du die lokale Änderungsrate \(m\) der Tangente \(t\) im Punkt \(P(x_0|y_0)\) der Funktion \(f\).

Es gilt: \[f'(x_0)=\lim_{x\to\infty}\, \frac{f(x)-f(x_0)}{x-x_0} \]

Je nachdem, wie groß Du das Intervall wählst, erhältst Du verschiedene Sekanten (in Abb. 1: \(s_1(x)\) und \(s_2(x)\)) und schließlich die Tangente \(t(x)\) in einem bestimmten Punkt.

Differentialrechnung Differentialquotient StudySmarterAbb. 1 – Differentialquotient.

Wie das genau funktioniert, erfährst Du in der Erklärung „Differentialquotient“.

Der Differenzenquotient ist die Formel der mittleren Änderungsrate.

Die mittlere Änderungsrate beschreibt die Steigung einer Sekante zwischen zwei Punkten auf einem Graphen einer Funktion. Diese kann im Intervall \([a, b]\) auf dem Graphen der Funktion \(f\) mithilfe des Differenzenquotienten berechnet werden.

Es gilt: \[m=\frac{f(b)-f(a)}{b-a}\]

Die mittlere Änderungsrate wird auch durchschnittliche Änderungsrate genannt. Mehr zu ihr erfährst Du in der Erklärung „mittlere Änderungsrate“.

Die Differentialrechnung in der Schule ist im zweidimensionalen Raum. Sie existiert ebenfalls im mehr dimensionalen Raum. Mit dieser Art der Differentialrechnung, der totalen Differentialrechnung, wirst Du Dich in der Schule nicht beschäftigen, jedoch könnte sie Dir im Studium begegnen.

Differentialrechnung – Regeln

In der Differentialrechnung gibt es einige Regeln, nach denen Du die Funktionen ableitest. Außerdem gibt es einige Funktionen, welche Du nicht nach den Ableitungsregeln ableiten kannst. Für diese kannst Du die Ableitungen auswendig lernen.

Ableitungsregeln

Es gibt verschiedene Ableitungsregeln, womit Du einzelne Komponenten einer Funktion ableiten kannst, aber auch verknüpfte Funktionen. Nicht jede Ableitungsregel kannst Du auf jede Funktion anwenden. Stattdessen wendest Du immer nur die Regel an, welche mit dem Aufbau der Funktion übereinstimmt.

AbleitungsregelFunktion \(f(x)\)Ableitung \(f'(x)\)
Konstantenregel\[f(x)=\color{bl}c\]\[f'(x)=0\]
Summenregel & Differenzregel\[f(x)={\color{bl}u(x)}\pm \color{gr}v(x)\]\[f'(x)={\color{bl}u'(x)}\pm \color{gr}v'(x)\]
Faktorregel\[f(x)={\color{bl}c}\cdot \color{gr}g(x)\]\[f'(x)={\color{bl}c}\cdot \color{gr}g'(x)\]
Potenzregel\[f(x)=x^{\color{bl}n}\]\[f'(x)={\color{bl}n}\cdot x^{{\color{bl}n}-1}\]
Quotientenregel\[f(x)=\frac{\color{bl}u(x)}{\color{gr}v(x)}\]\[f'(x)=\frac{{\color{r}u'(x)}\cdot {\color{gr}v(x)}-{\color{bl}u(x)}\cdot \color{li}v'(x)}{{\color{gr}v(x)}^2}\]
Produktregel\[f(x)={\color{bl}u(x)}\cdot {\color{gr}v(x)}\]\[f'(x)={\color{r}u'(x)}\cdot {\color{gr}v(x)}+ {\color{bl}u(x)}\cdot \color{li}v'(x)\]
partielle Ableitung\begin{align} f({\color{bl}x}; {\color{gr}y})&= {\color{bl}x}^n+ {\color{gr}y}^n \\ f({\color{bl}x}; {\color{gr}y})&= {\color{bl}x}^n+ {\color{gr}y}^n \end{align}\begin{align} f'({\color{bl}x}; {\color{gr}y})&= n\cdot {\color{bl}x}^{n-1}+0 \\ f'({\color{bl}x}; {\color{gr}y})&= 0+n\cdot {\color{gr}y}^{n-1} \end{align}

Übungsaufgaben zu den einzelnen Ableitungsregeln findest Du in der Erklärung „Ableitungsregeln“ oder direkt in den Erklärungen der Regel.

Wichtige Ableitungen

Einige Funktionen kannst Du nach keiner der Ableitungsregeln ableiten. Damit Du sie trotzdem ableiten kannst, gibt es diese Liste an wichtigen Ableitungen.

Funktionsname
Funktionen
Ableitungen
Sinusfunktion\[f(x)=\sin(x)\]\[f'(x)=cos(x)\]
Kosinusfunktion\[f(x)=\cos(x)\]\[f'(x)=-\sin(x)\]
Tangensfunktion
\[f(x)=\tan(x)\]
\[f'(x)=1+\tan^2(x)=\frac{1}{\cos^2(x)}\]
e-Funktion\[f(x)=e^x\]\[f'(x)=e^x\]
Logarithmusfunktion\[f(x)=log_a(x)\]\[f'(x)=\frac{1}{x\cdot ln(a)}\]
natürliche Logarithmusfunktion\[f(x)=ln(x)\]\[f'(x)=\frac{1}{x}\]
Wurzelfunktion\[f(x)=\sqrt{x}\]\[f'(x)=\frac{1}{2\sqrt{x}}\]
Exponentialfunktion\[f(x)=a^x\]\[f'(x)=a^x\cdot ln (a)\]

Zu allen wichtigen Ableitungen findest Du auch eine einzelne Erklärung, wo Dir die Herleitung erklärt wird und vieles mehr. Du findest die Erklärungen unter der Erklärung „Besondere Ableitungen“.

Wenn die Funktion weder nach den Ableitungsregeln ableitbar ist, noch unter den besonderen Ableitungen sich befindet, ist sie wahrscheinlich nicht differenzierbar.

Wie Du feststellst, ob die Funktion wirklich nicht differenzierbar ist, erfährst Du in der Erklärung „Differenzierbarkeit“.

Differentialrechnung – Anwendung

Die Differentialrechnung hat verschiedene Anwendungsbereiche, welche auch außerhalb des Mathematikunterrichts gebraucht werden. Unter anderem wird die Differentialrechnung in der Physik und Wirtschaft genutzt.

Eine Anwendung der Differentialrechnung in der Mathematik ist das Extremwertproblem.

Bei einem Extremwertproblem wird nach dem minimalen oder maximalen Wert einer Funktion \(f\) gefragt. Dabei können diese Extrema an eine Nebenbedingung gebunden sein.

In der Kosten- und Preistheorie der Wirtschaft hat die Differentialrechnung ebenfalls eine Anwendung.

Die Kosten- und Preistheorie beinhaltet viel zusammenhängende Funktionen in einer Produktion. Mit diesen kannst Du den Verlauf des möglichen Gewinns in Abhängigkeit von der verkauften Menge darstellen und mithilfe der Differentialrechnung den maximalen Gewinn errechnen.

In der Physik werden Bewegungen häufig in Diagrammen und als Funktionen dargestellt. Eine Bewegung kann dabei in verschiedenen Diagrammen dargestellt werden, welche Du durch die Differentialrechnung berechnen kannst.

Mehr zu den Anwendungen der Differentialrechnung erfährst Du in der Erklärung „Anwendung der Differentialrechnung“.

Differentialrechnung Zusammenfassung – Das Wichtigste

  • Unter der Differentialrechnung wird die Bestimmung der lokalen Änderung von Funktionen verstanden. Sie beschreibt somit das Änderungsverhalten einer Funktion \(f\) in einem bestimmten Punkt \(P\).
  • Als Differentialquotient wird der Grenzwert des Differenzenquotienten für ein immer kleineres Intervall bezeichnet. Mit dem Differentialquotienten berechnest Du die lokale Änderungsrate \(m\) der Tangente \(t\) in dem Punkt \(P(x_0|y_0)\) der Funktion \(f\).

    Es gilt: \[f'(x_0)=\lim_{x\to\infty}\, \frac{f(x)-f(x_0)}{x-x_0} \]

  • Es gibt verschiedene Ableitungsregeln, welche Du für die verschiedenen Funktionen nutzen kannst.

  • Für die Funktion, für welche keine Ableitungsregel gilt, gibt es eine Auflistung mit besonderen Ableitungen.

  • Die Differentialrechnung findet ihre Anwendung neben der Mathematik im Extremwertproblem, in der Kosten- und Preistheorie in der Wirtschaft und in der Physik zum Beispiel in der Darstellung von Bewegungen.

Häufig gestellte Fragen zum Thema Differentialrechnung

Ableitungen sind Funktionen mit denen du die Steigung einer Funktion in einer Stelle sehr schnell und effizient ausrechnen kannst. Ableitungen helfen dir eine Funktion auf ihre Änderungsrate zu vereinfachen.

Differenzieren und Ableiten werden als Synonyme benutzt. Dabei ist Ableiten der umgangssprachliche Begriff.

Wenn die zweite Ableitung gleich null ist, hat die Funktion an dieser Stelle keine Steigung und es liegt bei der Ausgangsfunktion ein Wendepunkt vor. Wenn die erste und die zweite Ableitung gleich null sind, liegt ein Sattelpunkt vor.

Mithilfe der Ableitungen kannst Du die Extrema einer Funktion bestimmen, aber auch in jedem beliebigen Punkt der Funktion die Steigung berechnen.

Mithilfe der Differentialrechnung kannst Du die Änderungsrate einer Funktion in einem bestimmten Punkt berechnen. Du berechnest die Steigung der Tangente in dem Punkt an die Funktion.

Teste dein Wissen mit Multiple-Choice-Karteikarten

Welche Aussage ist richtig?

Kannst du Wurzeln als Potenz schreiben?

Wie wird eine Polynomfunktion noch genannt?

Weiter

Leite die folgenden Terme nach x ab.


a) f(x) = sin(x³)

b) f(x) = (4x² + 7)³

c) f(x) = 2⋅cos(3x²)

a) f'(x) = 3x²⋅cos(x³)

b) f'(x) = 24x⋅(4x² + 7)²

c) f'(x) = -12x⋅sin (3x²)

Leite die folgenden Terme nach x ab.


a) f(x) = 2⋅cos(3x²)

b) f(x) = (2x² + 3x)²

c) f(x) = 3⋅cos(2x³)


a) f'(x) = -12x⋅sin(3x²)

b) f'(x) = 16x³+36x² +18x 

c) f'(x) = -18x²⋅sin(2x³) 


Leite die folgenden Terme nach x ab.


a) f(x) = sin(4x³)

b) f(x) = (x + x²)³

c) f(x) = -3⋅cos(x²)

a) f'(x) = 12x²⋅cos(4x³)

b) f'(x) = (3 + 6x)⋅(x + x²)²

c) f'(x) = 6x⋅sin (x²)

Leite die folgenden Terme nach x ab.


a) f(x) = -2⋅sin(x²)

b) f(x) = (x² + 2)²

c) f(x) = -2⋅cos(5x²+3)

a) f'(x) = -4x⋅cos(x²)

b) f'(x) = 4x³ + 8x 

c) f'(x) = 20x⋅sin(5x² + 3)

Beschreiben Sie was man unter dem Term verkettete Funktion versteht!

Zwei Funktionen g(x) und h(x) können zu einer neuen Funktion f(x) zusammengesetzt werden, indem man sie verkettet. Der Term der einen Funktion wird dabei in die Variable der anderen Funktion eingesetzt. Aufgrund der Verknüpfungsreihenfolge spricht man von einer inneren Funktion und einer äußeren Funktion. Bei der mathematischen Schreibweise f = g ° h (lies: f ist die Verkettung von g mit h) ist die Reihenfolge wichtig, da die an zweiter Stelle stehende Funktion immer die einzusetzende (innere) Funktion ist.

Wie lautet die Merkregel zur Kettenregel?

Ableitung der äußeren Funktion multipliziert mit Ableitung der inneren Funktion (oder kurz: „äußere Ableitung mal innere Ableitung“).

Mehr zum Thema Differentialrechnung

Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!

Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.

  • Karteikarten & Quizze
  • KI-Lernassistent
  • Lernplaner
  • Probeklausuren
  • Intelligente Notizen
Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App! Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!

Melde dich an für Notizen & Bearbeitung. 100% for free.

Entdecke Lernmaterial in der StudySmarter-App

Google Popup

Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!

Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!

Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.

  • Karteikarten & Quizze
  • KI-Lernassistent
  • Lernplaner
  • Probeklausuren
  • Intelligente Notizen
Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!