StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
Hast du gerade das Thema partielle Integration in Mathe, weißt aber nicht mehr genau worum es ging? Dann bist du hier genau richtig: In diesem Artikel wollen wir dir erklären, was eine partielle Integration ist und wie du sie anwenden kannst. Dazu zeigen wir dir Schritt für Schritt die einzelnen Rechenschritte, sodass du keine Probleme beim Rechnen haben wirst :) Das Thema kann dem Fach Integrationsrechnung und genauer dem Unterthema Integrationsregeln zugeordnet werden.
Bei der Integration gibt es zu jeder Funktion eine bestimmte Regel zur Ableitung. In diesem Fall ist bei der partiellen Integration die korrespondierende Regel die Produktregel. Dabei wird die partielle Integration verwendet, um Funktionen zu integrieren, die aus zwei oder mehreren Faktoren besteht. Ein anderer Name für die partielle Integration ist die Produktintegration. Die Definition lautet wie folgt:
Wichtig! Bei der partiellen Integration musst du selbst entscheiden, welcher Faktor f(x) und welcher g(x) sein soll. Da du bei der partiellen Integration f(x) ableitest und g(x) integrierst, solltest du dich für den Faktor entscheiden, der leichter abzuleiten bzw. zu integrieren ist.
Häufig schreibst du die ursprüngliche Funktion dann so um, dass die neue Funktion einfacher zu integrieren ist.
Ausschlaggebend bei der partiellen Integration ist die Wahl von f(x) und g’(x). Wenn du dich falsch entscheidest, kann dies unter Umständen dazu führen, dass das Integral noch komplizierter wird. Falls dies passieren sollte, ist es sehr wahrscheinlich, dass du f(x) und g’(x) vertauschen solltest.
Es gibt dazu einfache und hilfreiche Faustregeln:
Entsprechend des Rangs solltest du f(x) auswählen. Willst du zum Beispiel x²・cos(x) integrieren, so müsstest du x² für f(x) wählen und cos(x) für g’(x), denn algebraische Funktionen wie x² höher in der Liste stehen als trigonometrische Funktionen.
Achte darauf, dass es sich hierbei nur um eine Faustregel handelt. In den meisten Fällen wird sie gute Ergebnisse liefern, es kann jedoch zu Ausnahmefällen kommen.
Eselsbrücke: Wenn du dir LIATE nicht so gut merken kannst, kannst du dir vielleicht DETAIL (LIATE rückwärts ohne D) besser merken.
Nun geben wir dir eine Beispiel Aufgabe. Du sollst folgende Funktion integrieren:
Schritt für Schritt wollen wir dir jetzt den Lösungsrechenweg erklären:
2. Jetzt musst du die Ableitung von f(x) und die Stammfunktion von g(x) finden:
3.Nach der Formel für partielle Integration schreibst du nun:
Gut gemacht! Nachdem du alles fleißig durchgelesen hast, solltest du nun wissen, wie du die partielle Integration berechnen kannst:) Merk dir LIATE und die Formel für die partielle Integration! Weiter so!
Sei rechtzeitig vorbereitet für deine Prüfungen.
Teste dein Wissen mit spielerischen Quizzes.
Erstelle und finde Karteikarten in Rekordzeit.
Erstelle die schönsten Notizen schneller als je zuvor.
Hab all deine Lermaterialien an einem Ort.
Lade unzählige Dokumente hoch und habe sie immer dabei.
Kenne deine Schwächen und Stärken.
Ziele Setze dir individuelle Ziele und sammle Punkte.
Nie wieder prokrastinieren mit unseren Lernerinnerungen.
Sammle Punkte und erreiche neue Levels beim Lernen.
Lass dir Karteikarten automatisch erstellen.
Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.
Melde dich an für Notizen & Bearbeitung. 100% for free.