Select your language

Suggested languages for you:
Login Anmelden
StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
|
|

Die All-in-one Lernapp:

  • Karteikarten
  • NotizenNotes
  • ErklärungenExplanations
  • Lernpläne
  • Übungen
App nutzen

E Funktion ableiten

Save Speichern
Print Drucken
Edit Bearbeiten
Melde dich an und nutze alle Funktionen. Jetzt anmelden
E Funktion ableiten

In diesem Artikel zeigen wir dir, wie du die natürliche Exponentialfunktion, auch e-Funktion genannt, ableiten kannst. Diese Ableitung brauchst du in mehreren Bereichen, wie zum Beispiel den Extremstellen oder Wendepunkten.

Wenn du noch einmal die Eigenschaften der e-Funktion einsehen möchtest, dann lies dich in das Kapitel "Exponentialfunktion" rein. Dort findest du alles, was du über diese Funktion wissen musst.

Allgemeines zur Ableitung der e-Funktion

Es ist bereits bekannt, dass die e-Funktion aus der Exponentialfunktion entsteht. Deshalb schauen wir uns zuerst die allgemeine Exponentialfunktion in ihrer reinen Form f(x)=ax an.

f(x)=axableitenf'(x)=ln(a)·ax

Reine Exponentialfunktion ableiten

Du weißt bereits, was herauskommt, wenn du die Exponentialfunktion ableitest. Halten wir das Ganze noch einmal mathematisch fest.

Die Ableitung f'(x) der allgemeinen Exponentialfunktion f(x)=ax lautet:

f'(x)=ln(a)·ax

Wenn du erfahren möchtest, wie die Ableitung f'(x) der Exponentialfunktion zustande kommt, kannst du dir den nächsten vertiefenden Abschnitt ansehen.

Die Ableitung f'(x) kannst du dir mithilfe des Differentialquotienten herleiten. Damit du dafür gut vorbereitet bist, solltest du die Inhalte der Artikel Differentialquotient und Potenzen beherrschen.

Die Ableitung f'(x) ist mithilfe des Differentialquotienten wie folgt definiert.

f'(x)=limh0f(x+h)-f(x)h

Setzt du nun die allgemeine Exponentialfunktion ein, erhältst du folgenden Ausdruck.

f'(x)=limh0ax+h-axh

An dieser Stelle kannst du die Rechenregeln für Potenzen anwenden.

Zur Erinnerung:xa+b=xa·xb

Daraus ergibt sich Folgendes:

f'(x)=limh0ax·ah-axh

Nun kannst du ax ausklammern und die Rechenregeln für Grenzwerte anwenden.

f'(x)=limh0ax·ah-axh=limh0ax·(ah-1)h=ax·limh0ah-1h

Jetzt müsstest du für den Ausdruck limh0ah-1h noch den Grenzwert bilden, der einer Konstante entspricht. Da es an dieser Stelle aber zu weit führen würde, wird dir dieser Wert vorgegeben.

limh0ah-1h=ln(a)

Damit erhältst du folgende Ableitung f'(x) für die allgemeine Exponentialfunktion:

f'(x)=ax·limh0ah-1h=ax·ln(a)

Reine e-Funktion ableiten

Die e-Funktion ist eine spezielle Exponentialfunktion, bei der die Basis a der Eulerschen Zahl e entspricht. Formulieren wir nun die Ableitung f'(x) der e-Funktion.

Die Ableitung f'(x) der natürlichen Exponentialfunktion f(x)=ex lautet:

f'(x)=ex

Du kannst die reine e-Funktion f(x)=ex so oft ableiten, wie du willst, sie wird sich nie verändern. Als kleine Eselsbrücke kannst du dir merken: "Bleib so wie du bist – so wie die e-Funktion beim Ableiten!".

Wenn du erfahren möchtest, warum die e-Funktion abgeleitet wieder die e-Funktion ist, kannst du dir den nächsten vertiefenden Abschnitt anschauen.

Hier musst du die Ableitung f'(x) der allgemeinen Exponentialfunktion betrachten.

f'(x)=ln(a)·ax

Für die Basis a setzt du jetzt die Eulersche Zahl e ein und erhältst den folgenden Ausdruck.

f'(x)=ln(e)·ex

Anschließend musst du den Ausdruck ln(e) bestimmen. Diesen kennst du bereits.

ln(e)=1

Damit ergibt sich folgende Ableitung f'(x) für die e-Funktion:

f'(x)=1·ex=ex

Oftmals hast du in Aufgaben nicht die reine Version der e-Funktion vorliegen, sondern mit verschiedenen Parametern. Wie du auch diese ableiten kannst, erfährst du im nächsten Abschnitt.

Ableitungen der erweiterten e-Funktion

Interessanter ist die Ableitung der erweiterten e-Funktion mit Parametern. Diese benötigst du hauptsächlich, wenn du Extrempunkte und Wendepunkte berechnen sollst.

Zur Erinnerung:

  • Erweiterte e-Funktion: f(x)=b·ecx
  • Dabei dürfen die Parameterb und c nie 0 sein, da ansonsten keine e-Funktion mehr vorliegt.
  • Wenn beide Parameter1 sind, liegt die e-Funktion wieder in ihrer reinen Version f(x)=ex vor.

e-Funktion mit Vorfaktor ableiten

Betrachte zuerst die e-Funktion mit einem Vorfaktor b, während c=1 ist.

f(x)=b·ex

Dabei musst du auf die Faktorregel zurückgreifen.

Hier die Faktorregel zur Erinnerung: f(x)=a·g(x)ableitenf'(x)=a·g'(x)

Da du weißt, dass die Ableitung der e-Funktion die e-Funktion ist, erhältst du folgende Ableitung der Funktion f(x)=b·ex.

f'(x)=b·ex

Du kannst also auch die e-Funktion mit einem Vorfaktor f'(x)=b·ex so oft ableiten, wie du willst, sie wird sich nie verändern.

Halten wir diese Erkenntnis noch in einer Definition fest.

Die Ableitung f'(x) der e-Funktion mit einem Vorfaktor f(x)=b·ex lautet:

f'(x)=b·ex

Wende gleich die erlernte Ableitung der e-Funktion mit Vorfaktor an dieser Übung an:

Aufgabe 1

Bilde die Ableitung der Funktion f(x) mit f(x)=9·ex.

Lösung

Da sich eine e-Funktion mit einem Vorfaktor nicht verändert, erhältst du folgende Ableitung f'(x).

f'(x)=9·ex

e-Funktion mit Kettenregel ableiten

Nun kannst du die Ableitung f'(x) für die gesamte erweiterte e-Funktion f(x)=b·ecx bilden. Dazu benötigst du die Kettenregel und die Faktorregel.

Zur Erinnerung, die Kettenregel lautet: f(x)=g(h(x))ableitenf'(x)=g'(h(x))·h'(x)

Um die Kettenregel anzuwenden, musst du zuerst die äußere Funktion g(x) und die innere Funktion h(x) definieren.

g(x)=eh(x)=ecxh(x)=cx

Du benötigst von diesen Funktionen dann noch jeweils die Ableitung. Da die e-Funktion wieder die e-Funktion ergibt, bilden sich folgende Ableitungen.

g'(x)=ecxh'(x)=c

Nun kannst du die letzten Schritte der Kettenregel anwenden. Zusätzlich musst du noch den Vorfaktor b mit der Faktorregel berücksichtigen, um die Ableitung f'(x) für die gesamte erweiterte e-Funktion zu erhalten. Damit ergibt sich folgende gesamte Ableitung f'(x) für die erweiterte e-Funktion.

f'(x)=b·g'(h(x))·h'(x)=b·g'(cx)·c=b·ecx·c=bc·ecx

Immer dann, wenn im Exponenten nicht nur "x" steht, musst du die Kettenregel anwenden.

Halten wir das Ganze noch in einer Definition fest.

Die Ableitung f'(x) der erweiterten e-Funktion f(x)=b·ecx lautet:

f'(x)=bc·ecx

Wende auch hier zuerst einmal dein neu erlerntes Wissen zur Ableitung der erweiterten e-Funktion an einem Beispiel an.

Aufgabe 2

Bilde die Ableitung der Funktion f(x) mit f(x)=3·e14x.

Lösung

Identifiziere zuerst den Parameter c.

c=14

Als Nächstes kannst du direkt die Formel für die Ableitung der erweiterten e-Funktion anwenden. Du erhältst dann folgende Ableitung f'(x) der Funktion f(x)=3·e14x.

f'(x)=3·14·e14x=42e14x

e-Funktion mit Produktregel ableiten Übungen

Oftmals gibt es Funktionen, in der nicht nur eine e-Funktion vorkommt, sondern diese mit einer weiteren Funktion multipliziert wird. Um auf eine solche Aufgabe vorbereitet zu sein, schaue dir die nächste Übung an.

Aufgabe 3

Bilde die Ableitung der Funktion f(x) mit f(x)=e4x·x2.

Lösung

Dazu benötigst du zuallererst die Produktregel.

Produktregel: f(x)=g(x)·h(x)ableitenf'(x)=g'(x)·h(x)+g(x)·h'(x)

Dazu identifizieren wir die Funktionen g(x) und h(x).

g(x)=e4xh(x)=x2

Es ergeben sich folgende einzelne Ableitungen.

g'(x)=4·e4xh'(x)=2x

Damit ergibt sich folgende gesamte Ableitung f'(x).

f'(x)=4·e4x·x2+e4x·2x=2·e4x·(2x2+x)

e-Funktion ableiten - Das Wichtigste

  • Die Ableitung f'(x) der allgemeinen Exponentialfunktionf(x)=ax lautet: f'(x)=ln(a)·ax
  • Die Ableitung f'(x) der reinen e-Funktion f(x)=ex lautet: f'(x)
    • Eine hilfreiche Eselsbrücke: “Bleib so wie du bist - so wie die e-Funktion beim Ableiten!”
  • Die Ableitung f'(x) der e-Funktion mit einem Vorfaktor f(x)=b·ex lautet: f'(x)=b·ex
  • Die Ableitung f'(x) der erweiterten e-Funktion f(x)=b·ecx lautet: f'(x)=bc·ecx
    • Immer dann, wenn im Exponenten nicht nur "x" steht, musst du die Kettenregel anwenden.

Häufig gestellte Fragen zum Thema E Funktion ableiten

Ja, die e-Funktion lässt sich ableiten. Die Ableitung der Funktion f(x)=ex ist f'(x)=ex.

Die Ableitung an einer Stelle x0 ist immer die Steigung der Funktion f(x) an der Stelle x0.

Die Ableitung der Funktion f(x)=ex ist f'(x)=ex

Die Ableitung der Funktion f(x)=ebx ist f'(x)=b*ebx.

Die Ableitung der Funktion f(x)=ex ist f'(x)=ex

Die Ableitung der Funktion f(x)=ebx ist f'(x)=b*ebx.

Finales E Funktion ableiten Quiz

Frage

Nenne die Eselsbrücke, um die e-Funktion abzuleiten.

Antwort anzeigen

Antwort

Bleib so wie du bist - so wie die e-Funktion beim Ableiten!

Frage anzeigen

Frage

Wann muss die Kettenregel bei der e-Funktion angewandt werden?

Antwort anzeigen

Antwort

Die Kettenregel muss immer dann angewandt werden, wenn im Exponenten der e-Funktion nicht nur "x" steht.

Frage anzeigen

Mehr zum Thema E Funktion ableiten
60%

der Nutzer schaffen das E Funktion ableiten Quiz nicht! Kannst du es schaffen?

Quiz starten

Finde passende Lernmaterialien für deine Fächer

Alles was du für deinen Lernerfolg brauchst - in einer App!

Lernplan

Sei rechtzeitig vorbereitet für deine Prüfungen.

Quizzes

Teste dein Wissen mit spielerischen Quizzes.

Karteikarten

Erstelle und finde Karteikarten in Rekordzeit.

Notizen

Erstelle die schönsten Notizen schneller als je zuvor.

Lern-Sets

Hab all deine Lermaterialien an einem Ort.

Dokumente

Lade unzählige Dokumente hoch und habe sie immer dabei.

Lern Statistiken

Kenne deine Schwächen und Stärken.

Wöchentliche

Ziele Setze dir individuelle Ziele und sammle Punkte.

Smart Reminders

Nie wieder prokrastinieren mit unseren Lernerinnerungen.

Trophäen

Sammle Punkte und erreiche neue Levels beim Lernen.

Magic Marker

Lass dir Karteikarten automatisch erstellen.

Smartes Formatieren

Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.

Melde dich an für Notizen & Bearbeitung. 100% for free.