• :00Tage
  • :00Std
  • :00Min
  • 00Sek
Ein neues Zeitalter des Lernens steht bevorKostenlos anmelden
Login Anmelden

Select your language

Suggested languages for you:
StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
|
|

Ableitung ln

\(\definecolor{bl}{RGB}{20, 120, 200}\definecolor{gr}{RGB}{0, 220, 180}\definecolor{r}{RGB}{250, 50, 115}\definecolor{li}{RGB}{131, 99, 226}\definecolor{ge}{RGB}{255, 205, 0}\)Du kennst bereits die natürliche Logarithmusfunktion und fragst Dich, wie Du diese ableiten kannst? Diese Ableitung brauchst Du zum Beispiel bei der Berechnung von Extremstellen oder Wendepunkten.Um Dich in das Thema der ln-Funktion zu vertiefen, schau gerne in den Artikel "Natürlicher Logarithmus" rein!Die ln-Funktion entsteht aus der allgemeinen Logarithmusfunktion. Wie diese abgeleitet…

Von Expert*innen geprüfte Inhalte
Kostenlose StudySmarter App mit über 20 Millionen Studierenden
Mockup Schule

Entdecke über 200 Millionen kostenlose Materialien in unserer App

Ableitung ln

Ableitung ln
Illustration

Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken

Jetzt kostenlos anmelden

Nie wieder prokastinieren mit unseren Lernerinnerungen.

Jetzt kostenlos anmelden
Illustration

\(\definecolor{bl}{RGB}{20, 120, 200}\definecolor{gr}{RGB}{0, 220, 180}\definecolor{r}{RGB}{250, 50, 115}\definecolor{li}{RGB}{131, 99, 226}\definecolor{ge}{RGB}{255, 205, 0}\)Du kennst bereits die natürliche Logarithmusfunktion und fragst Dich, wie Du diese ableiten kannst? Diese Ableitung brauchst Du zum Beispiel bei der Berechnung von Extremstellen oder Wendepunkten.

Um Dich in das Thema der ln-Funktion zu vertiefen, schau gerne in den Artikel "Natürlicher Logarithmus" rein!

Allgemeines zur Ableitung der ln-Funktion

Die ln-Funktion entsteht aus der allgemeinen Logarithmusfunktion. Wie diese abgeleitet wird, erfährst Du im Folgenden.

Ln ableiten Ableitung Logarithmusfunktion StudySmarterAbbildung 1: Allgemeine Ableitung der Logarithmusfunktion

Allgemeine Logarithmusfunktion ableiten

Die Ableitung \(f'(x)\) der allgemeinen Logarithmusfunktion \(f(x) = \log_b(x)\) lautet:\[f'(x) = \frac{1}{\ln(b)\cdot x}\]f'(x)=1ln(b)·x

Um mehr über die Herleitung der Ableitung der allgemeinen Logarithmusfunktion zu erfahren, schau im Artikel "Logarithmus ableiten" vorbei.

Natürliche Logarithmusfunktion ableiten – Ableitung ln

Die Ableitung \(f'(x)\)der natürlichen Logarithmusfunktion \(f(x) = \ln{(x)}\) lautet:

\(f'(x) = \frac{1}{x}\)

Die ln-Funktion ist eine spezielle Logarithmusfunktion, bei der die Basis a der Eulerschen Zahl eentspricht. Formulieren wir nun die Ableitung f'(x) der ln-Funktion.

Herleitung der Ableitung der natürlichen Logarithmusfunktion

Die Ableitung \(f'(x)\) kannst Du Dir mithilfe des Differentialquotienten herleiten.

Mehr dazu findest Du in den Artikeln "Differentialquotient" und "Logarithmusgesetze".

Die Ableitung \(f'(x)\) ist mithilfe des Differentialquotienten wie folgt definiert:\[f'(x) =\lim_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h}\]

Setzt Du jetzt die ln-Funktion ein, erhältst Du folgenden Ausdruck:\[f'(x) =\lim_{h\rightarrow 0}\frac{ln(x+h)-ln(x)}{h}\]

An dieser Stelle kannst du die Produktregel des Logarithmusgesetz' anwenden.

Zur Erinnerung: Produktregel des Logarithmusgesetz': \(ln(a)-ln(b)=ln(\frac{a}{b}\)

Dadurch erhältst Du Folgendes:\[f'(x) = \lim_{h\rightarrow 0}(\frac{1}{h}\cdot\ln(\frac{x+h}{x}))\]

Als Nächstes erweiterst Du den Ausdruck um \(1 = \frac{x}{x}\) und schreibst mithilfe des Kommutativgesetzes wie folgt um:\begin{align}f'(x) &= \lim_{h\rightarrow 0}(\frac{1}{h}\cdot \frac{x}{x}\cdot\ln(\frac{x+h}{x}))\\&=\lim_{h\rightarrow 0}(\frac{1}{x}\cdot \frac{x}{h} \cdot \ln(\frac{x+h}{x}))\end{align}

An dieser Stelle wendest Du wieder ein Logarithmusgesetz an.

Zur Erinnerung: Potenzregel des Logarithmusgesetzes: \(b\cdot \ln(a) = ln(a^b)\)

Wendest Du nun dieses Logarithmusgesetz und die Rechenregeln für Grenzwerte an, erhältst Du folgenden Ausdruck:\begin{align} f'(x) &= \frac{1}{x}\lim_{h\rightarrow 0}(\frac{x}{h}\cdot ln(\frac{x+h}{x}))\\&= \frac{1}{x}\lim_{h\rightarrow 0}(ln(\frac{x+h}{x})^{\frac{x}{h}})\\&= \frac{1}{x}\ln(\lim_{h\rightarrow 0}(\frac{x+h}{x})^{\frac{x}{h}})\end{align}

Nun wird der Ausdruck der inneren Klammer noch einmal umgeschrieben:\begin{align}f'(x) &= \frac{1}{x}\ln(\lim_{h\rightarrow 0}(\frac{x+h}{x})^{\frac{x}{h}})\\&= \frac{1}{x}\ln(\lim_{h\rightarrow 0}(\frac{x}{x}+\frac{h}{x})^{\frac{x}{h}})\\&= \frac{1}{x}\ln(\lim_{h\rightarrow 0}(1+\frac{h}{x})^{\frac{x}{h}})\end{align}\end{align}

Um jetzt weiterzumachen, benötigst Du noch die Definition der Eulerschen Zahl e.

Zur Erinnerung: Definition der Eulerschen Zahl: \(e=\lim_{n\rightarrow\infty}(1+\frac{1}{n})^n\)

Es gilt nun Folgendes:\[\lim_{h\rightarrow 0}((1+\frac{h}{x})^{\frac{x}{h}}=e\]

Mit diesem Ausdruck und dem Wissen, dass \(\ln(e)\) dem Wert 1 entspricht, erhältst Du folgende Ableitung der natürlichen Logarithmusfunktion:\[f'(x)=\frac{1}{x}\cdot\ln(e) =\frac{1}{x}\]

Ableitung der erweiterten ln-Funktion

Die Ableitung der erweiterten ln-Funktion brauchst Du hauptsächlich, wenn du Extrempunkte und Wendepunkte berechnen sollst. Anders, als bei der erweiterten e-Funktion, gibt es bei der Logarithmusfunktion keine allgemeinen Parameter.

Du hast eine Funktion \(f(x)\) mit \(f(x) = {\color{gr}3\cdot\ln({\color{r}14x+1})}\). Möchtest Du diese Funktion nun ableiten, benötigst Du die Kettenregel und die Faktorregel.

Zur Erinnerung:

  • Kettenregel: f(x)=g(h(x))ableitenf'(x)=g'(h(x))·h'(x)\(f(x) = g(h(x))\rightarrow f'(x)=g'(h(x))\cdot h'(x)\)
  • Faktorregel: \(f(x) = a\cdot g(x) \rightarrow f'(x) = a\cdot g'(x)\)
Um die Kettenregel anzuwenden, definierst Du zuerst die äußere und die innere Funktion:\begin{align} g(x) &={\color{gr}3\cdot ln(x)}\\h(x) &={\color{r} 14x+1}\end{align}

Nun brauchst Du noch jeweils die Ableitung. Es ergeben sich folgende beiden Ableitungen:\begin{align}g'(x)&=\frac{1}{x}\\h'(x)&=14\end{align}

Wendest Du jetzt die Faktorregel und die letzten Schritte der Kettenregel an, erhältst Du folgende gesamte Ableitung \(f'(x)\) für die Funktion f(x) mit \(f(x)=3\cdot(14x+1)\):

\begin{align}f'(x)&=g'(h(x))\cdot h'(x)\\&=3\cdot \frac{1}{h(x)}\cdot h'(x)\\&=3\cdot\frac{1}{14x+1}\cdot 14\\&=42\cdot\frac{1}{14x+1}\end{align}

Folgendes lässt sich festhalten:

Die Ableitung \(f'(x)\) einer erweiterten natürlichen Logarithmusfunktion \(f(x) = a\cdot\ln({\color{r}bx+c})\)mit \(a,\,c\neq0\) lautet:\[f'(x) = a\cdot{\color{r} b}\cdot\frac{1}{\color{r}bx+c}\]

Immer dann, wenn in der Klammer des natürlichen Logarithmus nicht nur "x" steht, musst Du die Kettenregel anwenden.

Im Folgenden findest Du ein Beispiel, bei dem Du die Kettenregel anwenden musst.

Aufgabe 1

Bestimme die Ableitung \(f'(x)\) der Funktion \(f(x) = \ln(x^3+2x^2)\).

Lösung zur Aufgabe 1

Da Du wieder die Kettenregel anwenden musst, musst Du die innere und äußere Funktion definieren:\begin{align}g(x)&=ln(x)\\h(x)&=x^3+2x^2\end{align}Jetzt brauchst Du jeweils wieder die Ableitung:\begin{align}g'(x) &= \frac{1}{x}\\h'(x)&=3x^2+4x\end{align}

Wendest Du nun wieder die letzten Schritte der Kettenregel an, erhältst Du folgende gesamte Ableitung\begin{align}f'(x)&= g'(h(x))\cdot h'(x)\\&=\frac{1}{h(x)}\cdot h'(x) \\&= \frac{1}{x^3+2x^2}\cdot(3x^2+4x)\\&=\frac{3x+4}{x^2+2x}\end{align}

Natürliche Logarithmusfunktion mit Bruch ableiten

In der folgenden Aufgabe findest Du ein Beispiel mit einem Bruch als innerer Funktion.

Aufgabe 2

Bestimme die Ableitung \(f'(x)\) der Funktion \(f(x) = \ln(\frac{1}{x^2}\).

Lösung zur Aufgabe 2

Auch hier wendest Du die Kettenregel an und definierst die innere und äußere Funktion:\begin{align}g(x)&=\ln(x)\\h(x)&=\frac{1}{x^2}\end{align}

Jetzt brauchst Du wieder die jeweiligen Ableitungen. Da Du die innere Funktion \(h(x)\) auch mit \(h(x)=x^{-2}\) umschreiben kannst, erhältst Du folgende zwei Ableitungen:\begin{align}g'(x)&=\frac{1}{x}\\h'(x)&=-2x^{-3}=-\frac{2}{x^3}\end{align}

Wendest Du nun die letzten Schritte der Kettenregel an, erhältst Du folgende gesamte Ableitung:\begin{align}f'(x)&=g'(h(x))\cdot h'(x)\\&=\frac{1}{h(x)}\cdot\frac{-2}{x^3}\\&=x^2\cdot \frac{-2}{x^3}\\&=-\frac{2}{x}\end{align}

Ableitung ln – Das Wichtigste auf einen Blick

  • Die Ableitung \(f'(x)\) der ln-Funktion \(f(x) = \ln(x)\) lautet: \(f'(x)=\frac{1}{x}
  • Die Ableitung \(f'(x)\) der natürlichen Logarithmusfunktion \(f(x) = a\cdot\ln(bx+c)\) lautet: \(f'(x) = a\cdot b \frac{1}{bx +c}\)
  • Immer dann, wenn in der Klammer vom natürlichen Logarithmus nicht nur "x" steht, musst Du die Kettenregel anwenden:
    • Zuerst definierst Du die innere und die äußere Funktion.

    • Dann bildest DU jeweils die Ableitung der inneren und äußeren Funktion.

    • Zum Schluss müssen die Ableitungen und die Funktionen eingesetzt werden, um die gesamte Ableitung zu erhalten.

Häufig gestellte Fragen zum Thema Ableitung ln

Die ln Funktion ist der natürliche Logarithmus mit der Basis b=e.

Die ln Funktion ist zudem die Umkehrfunktion der e-Funktion.

Die Ableitung der Funktion f(x)=ln(x) ist f'(x)=1/x.

Die Ableitung der Funktion f(x)=ln(x) ist f'(x)=1/x.

Die Ableitung der Funktion f(x)=logb(x) ist f'(x)=1/(ln(b)*x).

Finales Ableitung ln Quiz

Ableitung ln Quiz - Teste dein Wissen

Frage

Mit welchen Schritten wird die Kettenregel angewendet?

Antwort anzeigen

Antwort

  • Zuerst musst du die innere und die äußere Funktion definieren.

  • Dann muss jeweils die Ableitung der inneren und äußeren Funktion gebildet werden.

  • Zum Schluss müssen die Ableitungen und die Funktionen eingesetzt werden, um die gesamte Ableitung zu erhalten.

Frage anzeigen

Mehr zum Thema Ableitung ln
60%

der Nutzer schaffen das Ableitung ln Quiz nicht! Kannst du es schaffen?

Quiz starten

Wie möchtest du den Inhalt lernen?

Karteikarten erstellen
Inhalte meiner Freund:innen lernen
Ein Quiz machen

94% der StudySmarter Nutzer erzielen bessere Noten.

Jetzt anmelden

94% der StudySmarter Nutzer erzielen bessere Noten.

Jetzt anmelden

Wie möchtest du den Inhalt lernen?

Karteikarten erstellen
Inhalte meiner Freund:innen lernen
Ein Quiz machen

Kostenloser mathe Spickzettel

Alles was du zu . wissen musst. Perfekt zusammengefasst, sodass du es dir leicht merken kannst!

Jetzt anmelden

Finde passende Lernmaterialien für deine Fächer

Alles was du für deinen Lernerfolg brauchst - in einer App!

Lernplan

Sei rechtzeitig vorbereitet für deine Prüfungen.

Quizzes

Teste dein Wissen mit spielerischen Quizzes.

Karteikarten

Erstelle und finde Karteikarten in Rekordzeit.

Notizen

Erstelle die schönsten Notizen schneller als je zuvor.

Lern-Sets

Hab all deine Lermaterialien an einem Ort.

Dokumente

Lade unzählige Dokumente hoch und habe sie immer dabei.

Lern Statistiken

Kenne deine Schwächen und Stärken.

Wöchentliche

Ziele Setze dir individuelle Ziele und sammle Punkte.

Smart Reminders

Nie wieder prokrastinieren mit unseren Lernerinnerungen.

Trophäen

Sammle Punkte und erreiche neue Levels beim Lernen.

Magic Marker

Lass dir Karteikarten automatisch erstellen.

Smartes Formatieren

Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.

Melde dich an für Notizen & Bearbeitung. 100% for free.

Fang an mit StudySmarter zu lernen, die einzige Lernapp, die du brauchst.

Jetzt kostenlos anmelden
Illustration