StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
Americas
Europe
Hast du im Moment das Thema Integration durch Substitution in Mathe, aber weißt nicht genau wie es geht? Dann bist du hier genau richtig: In diesem Artikel erfährst du, wie die Substitutionsregel funktioniert. Wenn du eine verkettete Funktion ableitest, benutzt du die Kettenregel. Was beim Ableiten die Kettenregel ist, nennt man beim Integrieren (Aufleiten) die Substitutionsregel. Die lautet wie folgt: \[\int f(x) = \int f(\varphi(u))\cdot\varphi'(u)du\]Am besten merkst du dir, dass die…
Entdecke über 200 Millionen kostenlose Materialien in unserer App
Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmeldenHast du im Moment das Thema Integration durch Substitution in Mathe, aber weißt nicht genau wie es geht? Dann bist du hier genau richtig: In diesem Artikel erfährst du, wie die Substitutionsregel funktioniert.
Wenn du eine verkettete Funktion ableitest, benutzt du die Kettenregel. Was beim Ableiten die Kettenregel ist, nennt man beim Integrieren (Aufleiten) die Substitutionsregel. Die lautet wie folgt: \[\int f(x) = \int f(\varphi(u))\cdot\varphi'(u)du\]
Am besten merkst du dir, dass die Integration durch Substitution immer dann angewendet wird, wenn beim Ableiten die Kettenregel angewendet werden würde. Dies ist bei ineinander verschachtelten (verketteten) Funktionen der Fall.
Gut zu wissen! φ = kleines Phi (griechisches Alphabet)
Folgende Schritte solltest du befolgen, wenn du durch Substitution integrieren möchtest:
2. Substituiere
3. Integriere
4. Substituiere zurück
Zu Schritt 1.1:
Im ersten Schritt überlegst du dir, welcher Teil der Funktion substituiert werden soll. Das Ziel ist es, das Integral auf ein bekanntes bzw. einfacheres berechenbares Integral zurückzuführen.
Zu Schritt 1.2:
Im zweiten Schritt berechnest du φ(u).
Wenn du dir die Substitutionsregel genauer anschaust, kannst du erkennen, dass gilt:\[\int f(x) = \int f(\varphi(u))\cdot\varphi'(u)du \rightarrow x=\varphi(u)\] Um φ(u) zu berechnen, musst du die Gleichung aus Schritt 1.1 nach x auflösen.
Zu Schritt 1.3:
Im dritten Schritt berechnest du die Ableitung von φ(u). Also ist φ′(u) gesucht.
Zu Schritt 1.4:
Wenn du dir die Substitutionsregel nun nochmal genauer anschaust, kannst du erkennen, dass gilt: \[\int f(x) = \int f(\varphi(u))\cdot\varphi'(u)du \rightarrow dx=\varphi'(u)du\] Das heißt, die Integrationsvariable x wird zu u!
Zu Schritt 2:
Substitution ist lateinisch und bedeutet „ersetzen“. Was genau ersetzt wird, schauen wir uns jetzt in einem Beispiel an:
Die Funktion \(F(x) = \int e^{2x}dx\) sei gegeben. Integriere durch Substitution.
1.1. Den zu substituierenden Term bestimmen.
Gesucht ist die Stammfunktion von \(e^{2x}\).
Da im Exponenten die 2x sind, und diese uns die Integration erschwert, ersetzen wir die 2x durch die Variable u.
2x = u
1.2 Gleichung aus 1.1 nach x auflösen.
\begin{align}2x&=u\\x&=\frac{1}{2}u\\\rightarrow\varphi(u)&=\frac{1}{2}u\end{align}
1.3 Gleichung aus 1.2 ableiten.
\[\varphi(u)=\frac{1}{2}\]
1.4 Integrationsvariable einsetzen.
\begin{align}dx&=\varphi'(u)du\\\rightarrow dx&=\frac{1}{2}du\end{align}
2. Substitution.
\begin{align} &F(x) = \int e^{2x}dx \text{ mit}\\&x=\frac{1}{2}u\\&dx =\frac{1}{2}du\end{align}
ergibt\[F(u) = \frac{1}{2}\int e^{u}du\]Durch die Ersetzung eines Teil des Integranden durch Integrationsvariablen konnten wir das Integral vereinfachen. Im nächsten Schritt können wir so leichter integrieren.
3. Integrieren.
\[F(u) = \frac{1}{2}\int e^{u}du=\frac{1}{2}e^u+C\]
4. Rücksubstitution.
\begin{align} u &=2x\\ \text{in } F(u)&=\frac{1}{2}e^u + C\\\rightarrow F(x)&=\frac{1}{2}e^{2x} + C\end{align}
Die partielle Integration kann als Produktregel der Integralrechnung betrachtet werden und ist grundsätzlich leichter auszuführen. Substitution wird häufiger genutzt, wenn es keine einfache Trennung in simpel zu integrierende Faktoren existieren. Je komplexer der Term, desto häufiger lässt sich der Term mit einer geschickten Substitution vereinfachen.
Integration ist die Umkehrung der Ableitung. Dabei entspricht nach dem Hauptsatz der Integral- und Differentialrechnung die Ableitung des Integrals der ursprünglich integrierten Funktion.
Durch die geschickte Substitution lässt sich das Integral einfacher ausrechnen. Ohne die Substitution sind manche Integrale nicht mit klassischen Regeln lösbar.
Lineare Substitution ist ein Sonderfall der Integration durch Substitution, bei der die Integrationsvariable durch eine lineare Funktion ersetzt wird. Die Rechnung mit linearer Substitution ist besonders einfach und folgt simplen Regeln.
der Nutzer schaffen das Integration durch Substitution Quiz nicht! Kannst du es schaffen?
Quiz startenWie möchtest du den Inhalt lernen?
94% der StudySmarter Nutzer erzielen bessere Noten.
Jetzt anmelden94% der StudySmarter Nutzer erzielen bessere Noten.
Jetzt anmeldenWie möchtest du den Inhalt lernen?
Kostenloser mathe Spickzettel
Alles was du zu . wissen musst. Perfekt zusammengefasst, sodass du es dir leicht merken kannst!
Sei rechtzeitig vorbereitet für deine Prüfungen.
Teste dein Wissen mit spielerischen Quizzes.
Erstelle und finde Karteikarten in Rekordzeit.
Erstelle die schönsten Notizen schneller als je zuvor.
Hab all deine Lermaterialien an einem Ort.
Lade unzählige Dokumente hoch und habe sie immer dabei.
Kenne deine Schwächen und Stärken.
Ziele Setze dir individuelle Ziele und sammle Punkte.
Nie wieder prokrastinieren mit unseren Lernerinnerungen.
Sammle Punkte und erreiche neue Levels beim Lernen.
Lass dir Karteikarten automatisch erstellen.
Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.
Melde dich an für Notizen & Bearbeitung. 100% for free.