StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
Americas
Europe
In diesem Artikel dreht sich alles um das Thema Logistisches Wachstum - eine wichtige Komponente in der Analyse, die vielseitige Anwendungsbereiche hat, wie in der Biologie, in der Wirtschaft oder in der Soziologie. Zunächst wirst du lernen, was Logistisches Wachstum bedeutet und wie es in Mathematik grundlegend aufgebaut ist. Anschließend geht der Fokus auf die Praxis, in der du die Formel und die Ableitung des Logistischen Wachstums kennenlernst. Auch der Unterschied zu exponentiellem Wachstum wird erklärt. Zusätzlich werden Beispiele in die praktische Anwendung eingeführt und schließlich dein erworbenes Wissen mit Aufgaben und Lösungen vertieft.
Entdecke über 50 Millionen kostenlose Lernmaterialien in unserer App.
Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmeldenIn diesem Artikel dreht sich alles um das Thema Logistisches Wachstum - eine wichtige Komponente in der Analyse, die vielseitige Anwendungsbereiche hat, wie in der Biologie, in der Wirtschaft oder in der Soziologie. Zunächst wirst du lernen, was Logistisches Wachstum bedeutet und wie es in Mathematik grundlegend aufgebaut ist. Anschließend geht der Fokus auf die Praxis, in der du die Formel und die Ableitung des Logistischen Wachstums kennenlernst. Auch der Unterschied zu exponentiellem Wachstum wird erklärt. Zusätzlich werden Beispiele in die praktische Anwendung eingeführt und schließlich dein erworbenes Wissen mit Aufgaben und Lösungen vertieft.
Du kannst das Logistische Wachstum als ein Wachstumsmodell verstehen, das sich dadurch auszeichnet, dass es nach einem anfänglich exponentiellen Wachstum ein Plateau erreicht. Dieses Plateau nennt du auch die Tragfähigkeit. Sie repräsentiert die maximale Populationsgröße, die eine bestimmte Umgebung aufrechterhalten kann.
Für ein einfaches Beispiel nimmst du an, du hast eine Population von Bakterien, die in einer Petrischale wachsen. Anfangs werden die Bakterien exponentiell wachsen, aber da die Nährstoffe in der Schale begrenzt sind, wird das Wachstum schließlich zu einem Halt kommen. Dieses Niveau, auf dem das Wachstum stoppt, wäre die Tragfähigkeit.
Wenn du dich tiefer mit der materie auseinander setzt, wirst du feststellen, dass die Funktionalität des Logistischen Wachstums \[f(x) = \frac{L}{1 + e^{-k(x-x_0)}}\] ist, wo \(L\) die Tragfähigkeit, \(e\) die Basis des natürlichen Logarithmus, \(k\) die Wachstumsrate und \(x_0\) der Mittelpunkt der Sigmoid-Kurve ist.
1. Biologie |
2. Ökologie |
3. Soziologie |
4. Wirtschaft |
Aus mathematischer Sicht ist das logistische Wachstum ein Prozess, der durch eine Differentialgleichung beschrieben wird.
Formel des Logistischen Wachstums: \(P(t)=\frac{K}{1+Ae^{-rt}}\), mit \(P(t)\) als Population zur Zeit \(t\), \(K\) als Tragfähigkeit, \(r\) als Wachstumsrate und \(A\) als Konstante, die vom Anfangszustand der Population abhängt.
Ableitung des Logistischen Wachstums: \(\frac{dP}{dt} = rP\left(1-\frac{P}{K}\right)\), mit \(\frac{dP}{dt}\) als Ableitung der Bevölkerung nach der Zeit, \(r\) als Rate des Wachstums, \(P\) als Menge der Population und \(K\) als Kapazität.
Exponentielles Wachstum | Logistisches Wachstum |
Ausgehend von einer gegebenen Größe wächst die Population im gleichen konstanten Verhältnis. | Die Populationsgröße wächst anfangs schnell, verlangsamt sich jedoch und erreicht schließlich einen stabilen Endwert (die Tragfähigkeit). |
Die Wachstumsrate ist konstant und die Population wächst kontinuierlich. | Die Wachstumsrate sinkt mit wachsender Populationsgröße und das Wachstum hält an, wenn die Population die Tragfähigkeit erreicht hat. |
Nimmt an, dass die Ressourcen unbegrenzt sind. | Berücksichtigt begrenzte Ressourcen und eine maximale Populationsgröße. |
Für eine konkrete Anwendung kannst du eine fiktive Population von Kaninchen betrachten, die in einem geschlossenen Ökosystem leben. Du startest mit einer Population von 100 Kaninchen (\(P_0 = 100\)), einem jährlichen Wachstumsfaktor von 2 (\(r = 2\)) und einer maximalen Population von 1000 Kaninchen, die das Ökosystem unterstützen kann (\(K = 1000\)). Mit diesen Werten kannst du die Funktion wie folgt aufstellen: \(P(t) = \frac{1000}{1 + 9e^{-2t}}\). Mit dieser Funktion kannst du die Populationsgröße der Kaninchen für jedes zukünftige Jahr berechnen.\
Analyse in der Biologie ist ein Hauptanwendungsbereich für das logistische Wachstum. Nehmen wir das typische Beispiel eines Fischbestandes in einem Teich. Am Anfang, wenn der Teich erst besiedelt wird, ist das Wachstum nahezu exponentiell, da es genügend Ressourcen und wenig Konkurrenz gibt. Aber mit der Zeit, wenn mehr und mehr Fische den Teich besetzen, werden die Ressourcen knapper und die Wachstumsrate nimmt ab. Schließlich bleibt der Fischbestand relativ konstant, abhängig vom Niveau der natürlichen Erneuerung und der Fischerei. Diese konstante Stufe entspricht der Tragfähigkeit.
In praktischen Anwendungen ist es häufig schwierig, die genauen Parameter für das logistische Wachstumsmodell zu bestimmen. Schätzungen für die Tragfähigkeit und die Wachstumsrate erfordern genaue Messungen und können durch verschiedene Faktoren beeinflusst werden, einschließlich Umweltschwankungen, genetischer Variation innerhalb der Population und unerwarteter Störungen im Ökosystem. Trotz dieser Unsicherheiten dient das Modell als nützliches Werkzeug für die Vorhersage von Wachstumstrends und die Verwaltung von Ressourcen.<\p>
1. Angenommen, die Anfangspopulationsgröße einer Art ist 500 (\(P_0 = 500\)), die Wachstumsrate beträgt 0.2 (\(r = 0.2\)) und die Tragfähigkeit des Ökosystems beträgt 2000 (\(K = 2000\)). Stelle die logistische Wachstumsfunktion auf und berechne die Populationsgröße nach 10 Jahren.
2. Gegeben ist eine logistische Wachstumsfunktion \(P(t) = \frac{5000}{1 + 4e^{-0.3t}}\).Was ist die Anfangspopulationsgröße, die Wachstumsrate und die Tragfähigkeit? Welche Populationsgröße wird nach 5 Jahren erreicht?
3. Ein Unternehmen produziert ein neues Produkt. Es wird erwartet, dass die Verkaufszahlen zunächst schnell ansteigen, sich dann jedoch verlangsamen und schließlich einen stabilen Wert erreichen, wenn der Markt gesättigt ist. Angenommen, die ursprüngliche Verkaufsrate beträgt 100 Einheiten pro Monat und der maximale Verkaufsschätzwert beträgt 10000 Einheiten pro Monat bei einer Wachstumsrate von 0.1. Stelle die logistische Wachstumsfunktion auf und berechne den erwarteten Verkauf nach 12 Monaten.
1. Für die erste Aufgabe ist die logistische Wachstumsfunktion gegeben durch \(P(t) = \frac{2000}{1 + 3e^{-0.2t}}\). Nach 10 Jahren beträgt die Populationsgröße \(P(10) = \frac{2000}{1 + 3e^{-2}} \approx 1518\).
2. Für die zweite Aufgabe ist \(P_0 = 1000\), \(r = 0.3\) und \(K = 5000\). Nach 5 Jahren wird die Populationsgröße sein \(P(5) = \frac{5000}{1 + 4e^{-1.5}} \approx 3201\).
3. Für die dritte Aufgabe ist die logistische Wachstumsfunktion gegeben durch \(P(t) = \frac{10000}{1 + 99e^{-0.1t}}\). Nach 12 Monaten werden die erwarteten Verkäufe \(P(12) = \frac{10000}{1 + 99e^{-1.2}} \approx 2110\) Einheiten sein.
Karteikarten in Logistisches Wachstum10
Lerne jetztWas ist Logistisches Wachstum und in welchem Kontext wird es meist genutzt?
Logistisches Wachstum ist ein mathematisches Modell, das ein anfänglich exponentielles Wachstum beschreibt, welches dann eine maximale Kapazität - die Tragfähigkeit - erreicht. Es findet häufig Anwendung in Bereichen wie Biologie, Ökologie, Soziologie und Wirtschaft, wo ein Wachstumsprozess durch begrenzende Ressourcen in seiner Kapazität beschränkt ist.
Was sind die Hauptphasen des Logistischen Wachstums und wie wird es mathematisch dargestellt?
Das logistische Wachstum folgt einer Sigmoid-Kurve und ist zweigeteilt: die Wachstumsphase und die Verlangsamungsphase. Mathematisch gesehen erfüllt die Bevölkerungsdichte \(P\) die Gleichung \[\frac{dP}{dt} = rP\left(1 - \frac{P}{K}\right)\], wobei \(K\) die Tragfähigkeit und \(r\) die Wachstumsrate ist.
Was ist die Formel des logistischen Wachstums?
Die Formel des logistischen Wachstums ist \(P(t)=\frac{K}{1+Ae^{-rt}}\), bei der \(P(t)\) die Population zur Zeit \(t\), \(K\) die Tragfähigkeit, \(r\) die Wachstumsrate und \(A\) eine Konstante ist, die vom Anfangszustand der Population abhängt.
Was ist die Ableitung des logistischen Wachstums und wie interpretiert man sie?
Die Ableitung des logistischen Wachstums ist \(\frac{dP}{dt} = rP\left(1-\frac{P}{K}\right)\). Sie gibt Auskunft darüber, wie sich die Wachstumsrate zu einem bestimmten Zeitpunkt ändert. Die Ableitung erreicht ein Maximum, wenn die Population genau die Hälfte der Tragfähigkeit beträgt.
Was ist der Hauptunterschied zwischen exponentiellem und logistischem Wachstum?
Beim exponentiellen Wachstum ist die Wachstumsrate konstant und die Ressourcen sind theoretisch unbegrenzt, während beim logistischen Wachstum die Wachstumsrate mit zunehmender Populationsgröße abnimmt und das Wachstum stoppt, wenn die Population die Tragfähigkeit erreicht hat.
Warum ist das logistische Wachstumsmodell oftmals hilfreicher beim Modellieren realer Populationen und Systeme?
Das logistische Wachstum berücksichtigt die Wirkung begrenzter Ressourcen und eine maximale Populationsgröße (Tragfähigkeit), was oft eine realistischere Darstellung von Wachstumsprozessen bietet als das Modell des exponentiellen Wachstums.
Du hast bereits ein Konto? Anmelden
Open in AppDie erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.
Melde dich an für Notizen & Bearbeitung. 100% for free.
Speichere Erklärungen in deinem persönlichen Bereich und greife jederzeit und überall auf sie zu!
Mit E-Mail registrieren Mit Apple registrierenDurch deine Registrierung stimmst du den AGBs und der Datenschutzerklärung von StudySmarter zu.
Du hast schon einen Account? Anmelden