• :00Tage
  • :00Std
  • :00Min
  • 00Sek
Ein neues Zeitalter des Lernens steht bevorKostenlos anmelden
Login Anmelden

Select your language

Suggested languages for you:
StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
|
|

y-Achsenabschnitt

Stell Dir vor, Du stehst vor einer Straße, die Du überqueren musst, um an Deinem Ziel anzukommen. Die Straße stellt die y-Achse dar, während Du den Verlauf der Funktion vorgibst, wenn Du die Straße überquerst. Der Punkt, an dem Du die Straße überquerst, ist der y-Achsenabschnitt und dieser Punkt kann berechnet oder sogar abgelesen werden. Wie du den Schnittpunkt einer…

Von Expert*innen geprüfte Inhalte
Kostenlose StudySmarter App mit über 20 Millionen Studierenden
Mockup Schule

Entdecke über 200 Millionen kostenlose Materialien in unserer App

y-Achsenabschnitt

y-Achsenabschnitt
Illustration

Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken

Jetzt kostenlos anmelden

Nie wieder prokastinieren mit unseren Lernerinnerungen.

Jetzt kostenlos anmelden
Illustration

Stell Dir vor, Du stehst vor einer Straße, die Du überqueren musst, um an Deinem Ziel anzukommen. Die Straße stellt die y-Achse dar, während Du den Verlauf der Funktion vorgibst, wenn Du die Straße überquerst. Der Punkt, an dem Du die Straße überquerst, ist der y-Achsenabschnitt und dieser Punkt kann berechnet oder sogar abgelesen werden. Wie du den Schnittpunkt einer Funktion mit der y-Achse bestimmen kannst, wird Dir in dieser Erklärung gezeigt.

y-Achsenabschnitt

Der Y-Achsenabschnitt ist der Schnittpunkt P einer Funktion mit der y-Achse.

y0=f(x)

Ein Y-Achsenabschnitt ist immer an der x-Koordinate x=0.

y-Achsenabschnitt einer linearen Funktion

Eine lineare Funktion ist im Koordinatensystem durch eine Gerade dargestellt.

Eine lineare Funktion ist eine ganzrationale Funktion in der Form f(x) = mx+t mit Df = .

Dabei stellt m die Steigung der Gerade und t den y-Achsenabschnitt dar.

Ein Y-Achsenabschnitt kann auch bestimmt werden, wenn Du eine Funktion gegeben hast und der Parameter t abliest

(f(x) = mx+t ).

In dieser Abbildung siehst Du den Y-Achsenabschnitt der Funktion f(x)=2x+4.

Y Achsenabschnitt bestimmen StudySmarterAbbildung 1: Y-Achsenabschnitt

y-Achsenabschnitt bestimmen

Einen Y-Achsenabschnitt kannst Du durch Ablesen bestimmen. Das ist der Vorgang:

  1. Zuerst gehst Du im Koordinatensystem entlang der y-Achse.
  2. Dann markierst Du die Schnittstelle der Funktionf(x) mit der y-Achse und liest den y-Wert ab.
  3. Den y-Wert wandelst Du dann noch in einen Punkt P um, in dem Du als x-Wert x=0 und als y-Wert die Schnittstelle nimmst.

y-Achsenabschnitt einer linearen Funktion bestimmen

Wie Du einen Y-Achsenabschnitt bestimmst, wird Dir anhand einer linearen Funktion gezeigt.

y-Achsenabschnitt – Aufgabe 1

Bestimme den Y-Achsenabschnitt der linearen Funktion f(x) mithilfe des Koordinatensystems.

y Achsenabschnitt bestimmen StudySmarterAbbildung 3: Y-Achsenabschnitt bestimmen

Lösung

Du gehst jetzt entlang der y-Achse (pinkfarbene Linie) und markierst den Schnittpunkt P der linearen Funktion mit der Achse.

y Achsenabschnitt bestimmen StudySmarterAbbildung 3: Y-Achsenabschnitt bestimmen

An der Abbildung erkennst Du, dass der Y-Achsenabschnitt an der Stelle y=2 ist. Das führt zu dem Schnittpunkt P(0|2).

Die lineare Funktion f(x) hat ihren Y-Achsenabschnitt an dem Punkt P(0|2).

y Achsenabschnitt bestimmen StudySmarterAbbildung 4: Y-Achsenabschnitt bestimmen

Ein Y-Achsenabschnitt kann auch bestimmt werden, wenn Du eine Funktion gegeben hast und der Parameter t abliest (f(x) = mx+t ).

Wie gehst Du jetzt bei einer quadratischen Funktion vor?

y-Achsenabschnitt einer Parabel bestimmen & ablesen

Einen Y-Achsenabschnitt kannst Du auch an einer Parabel ablesen. Doch wie funktioniert das?

Du gehst genau so vor, wie bei einer linearen Funktion, indem Du im Koordinatensystem entlang der y-Achse gehst und dann die Schnittstelle abliest. Diese Schnittstelle wandelst Du noch in einen Punkt P um.

y-Achsenabschnitt – Aufgabe 2

Bestimme den Y-Achsenabschnitt der abgebildeten Parabel.

y Achsenabschnitt einer Parabel bestimmen StudySmarterAbbildung 5: Y-Achsenabschnitt einer Parabel bestimmen

Lösung

Du gehst jetzt entlang der y-Achse und markierst den Schnittpunkt P der Parabel mit der y-Achse (pinkfarbene Linie).

y Achsenabschnitt einer Parabel bestimmen StudySmarterAbbildung 6: Y-Achsenabschnitt einer Parabel bestimmen

An der Abbildung erkennst Du, dass der Y-Achsenabschnitt an der Stelle y=-1,5 ist. Das führt zu dem Schnittpunkt P(0|-1,5).

Die quadratische Funktion f(x) hat ihren Y-Achsenabschnitt an dem Punkt P(0|-1,5).

y Achsenabschnitt einer Parabel bestimmen StudySmarterAbbildung 7: Y-Achsenabschnitt einer Parabel bestimmen

y-Achsenabschnitt berechnen

Einen Y-Achsenabschnitt kannst Du nicht nur bestimmen, sondern auch berechnen.

  1. Du setzt zuerst eine 0 statt der Variable in die gegebene Funktion ein.
  2. Dann berechnest Du die Funktion.
  3. Die Zahl, die Du berechnet hast, ist der y-Wert, beziehungsweise der Y-Achsenabschnitt.
  4. Den y-Wert wandelst Du dann noch in einen Punkt P um, in dem Du als x-Wert x=0 und als y-Wert die Schnittstelle nimmst.

Y-Achsenabschnitt einer linearen Funktion berechnen

In der Praxis sieht das bei einer linearen Funktion f(x) folgendermaßen aus:

y-Achsenabschnitt – Aufgabe 3

Berechne den Y-Achsenabschnitt, der entsteht, wenn Du die Straße überquerst. Es ist die Funktion f(x)=3x+5vorgegeben.

Lösung

Um den Y-Achsenabschnitt zu berechnen, musst Du 0 in die Funktion einsetzen.

f(x)=3x+5f(0)=3·0+5=5

Der Y-Achsenabschnitt, der entsteht, wenn Du eine Straße überquerst, ist y=5 und der Schnittpunkt mit der y-Achse ist P(0|5).

y Achsenabschnitt berechnen StudySmarterAbbildung 8: Y-Achsenabschnitt berechnen

y-Achsenabschnitt einer quadratischen Funktion berechnen

Auch bei einer quadratischen Funktion kann der Y-Achsenabschnitt berechnet werden.

Bei einer quadratischen Funktion gehst Du genau so vor, wie bei einer linearen Funktion, nämlich 0 für x in die Funktionsgleichung einsetzen und den gewonnenen y-Wert in einen Punkt P umformen. Als x-Wert des Punktes wird dann x=0 eingesetzt.

y-Achsenabschnitt – Aufgabe 4

Berechne den Y-Achsenabschnitt der quadratischen Funktion f(x)=2x2+5x-4,5.

Lösung

Um den Y-Achsenabschnitt zu berechnen, musst Du statt dem x eine 0 in die Funktionsgleichung einsetzen.

f(x)=2x2+5x-4,5f(0)=2·02+5·0-4,5=-4,5

Der y-Achsenabschnitt liegt bei y=-4,5. Dieser Wert muss noch in einen Punkt umgewandelt werden. Da x=0 und y=-4,5 ist der Schnittpunkt mit der y-Achse bei P(0|-4,5).

y Achsenabschnitt einer Parabel StudySmarterAbbildung 9: Y-Achsenabschnitt einer Parabel

y-Achsenabschnitt mit zwei Punkten berechnen

Wie gehst Du vor, wenn Du einen Y-Achsenabschnitt einer linearen Funktion berechnen musst, Dir aber nur zwei Punkte gegeben sind?

Dazu gehst Du in diesen Schritten vor:

  • Geradengleichung mithilfe von zwei Punkten aufstellen
  • In der Geradengleichung x durch null ersetzen (f(0))
  • Gleichung berechnen & das Ergebnis gibt die y-Koordinate des y-Achsenabschnitts an (y=...)

Schau Dir gern die Erklärung "Lineare Funktionen" an, wenn Du noch mal nachlesen möchtest, wie genau eine Geradengleichung aufgestellt wird.

Die Formel zur Berechnung der Steigung einer linearen Funktion lautet:

m = y2-y1x2-x2

Wie Du eine solche Gerade und den zugehörigen Y-Achsenabschnitt berechnest, siehst Du jetzt in der Praxis.

y-Achsenabschnitt – Aufgabe 5

Stelle die Gleichung der Geraden f(x) auf, die durch die Punkte P(-2|3) und Q(4|-7) verläuft. Berechne dann den Y-Achsenabschnitt dieser Gerade.

Lösung

Zuerst setzt Du die beiden Punktkoordinaten in die Steigungsformel ein.

m = yQ-yPxQ-xP = -7-34-(-2) = -53

Dieser Wert wird jetzt in die Form der linearen Funktion eingesetzt, um den Y-Achsenabschnitt zu ermitteln.

y = -53x+t

Um den Y-Achsenabschnitt zu ermitteln, wird jetzt der Punkt P(-2|3) eingesetzt und nach t umgestellt.

3 = -53(-2)+t3 = 103+t|-103-13 = t

Diese Werte werden jetzt in die Gerade f(x) eingesetzt.

f(x) = -53x-13

Dann, beim Berechnen des Y-Achsenabschnitts, musst Du 0 in die Funktionsgleichung der linearen Funktion einsetzen.

f(x) = -53x-13f(0)=-53·0-13=-13

Der y-Achsenabschnitt liegt bei y=-13. Dieser Wert muss noch in einen Punkt umgewandelt werden. Da x=0und damity=-13 der Schnittpunkt der linearen Funktion f(x) mit der y-Achse bei P 0|13ist.

y Achsenabschnitt berechnen StudySmarterAbbildung 10: Y-Achsenabschnitt berechnen

y-Achsenabschnitt – Aufgaben zum Üben

Jetzt kannst Du Dein Wissen stärken, in dem Du die Übungsaufgaben rechnest.

y-Achsenabschnitt – Aufgabe 6

Berechne den Y-Achsenabschnitt der quadratischen Funktion f(x)=4x2+0,5x+3,1.

Lösung

Der Y-Achsenabschnitt wird berechnet, in dem Du 0 in die quadratische Funktion einsetzt und ausmultiplizierst.

f(x)=4x2+0,5x+3,1f(0)=4·02+0,5·0+3,1=3,1

Der Y-Achsenabschnitt liegt bei y=3,1. Nun muss der y-Wert noch in einen Punkt umgewandelt werden, indem für x=0 eingesetzt wird.

Der Y-Achsenabschnitt der quadratischen Funktion f(x) liegt an dem Punkt P(0|3,1).

y-Achsenabschnitt – Aufgabe 7

Bestimme den Y-Achsenabschnitt der linearen Funktion f(x) mithilfe des Koordinatensystems.

y Achsenabschnitt bestimmen StudySmarterAbbildung 11: Y-Achsenabschnitt bestimmen

Lösung

Du gehst zuerst entlang der y-Achse und markierst den Schnittpunkt P der Parabel mit der y-Achse (pinkfarbene Linie).

y Achsenabschnitt bestimmen StudySmarterAbbildung 12: Y-Achsenabschnitt bestimmen

An der Abbildung erkennst Du, dass der Y-Achsenabschnitt an der Stelle y=1 ist. Das führt zu dem Schnittpunkt P(0|1).

Die quadratische Funktion f(x) hat ihren Y-Achsenabschnitt an dem Punkt P(0|1).

y Achsenabschnitt bestimmen StudySmarterAbbildung 13: Y-Achsenabschnitt bestimmen

y-Achsenabschnitt – Aufgabe 8

Stelle die Geradengleichung der Geradef(x) mithilfe der Punkte P(-3|5) und Q(4|2) auf. Berechne dann den Y-Achsenabschnitt der Gerade.

Lösung

Zuerst setzt Du die Werte der Punkte P und Q in die Formel zur Berechnung der Steigung m ein.

m= yQ-yPxQ-xP = 2-54-(-3) = -37

Die Steigung der Geradef(x) ist m=-37. Dieser Wert wird jetzt in die Rohform der linearen Funktion eingesetzt.

y = mx+t = -37x+t

In diese Gerade wird jetzt einer der Punkte P oder Q eingesetzt und nach t umgestellt. In diesem Lösungsansatz wird der Punkt Q verwendet.

2 = -37·4+t2 = -127+t|+127t = 267

Jetzt werden die Werte nur noch in die Funktion f(x) eingetragen und Du hast die Funktionsgleichung berechnet.

f(x) = -37x+267

Um nun den Y-Achsenabschnitt zu berechnen, musst Du 0 in die Funktionsgleichung der linearen Funktion einsetzen.

f(x) = -37x+267f(0)=-37·0+267=267

Der y-Achsenabschnitt liegt bei y=267. Dieser Wert muss noch in einen Punkt umgewandelt werden. Da x=0und y=267 ist der Schnittpunkt der linearen Funktion f(x) mit der y-Achse bei P 0|267.

y Achsenabschnitt – Das Wichtigste

  • Der Y-Achsenabschnitt ist der Schnittpunkt P einer Funktion mit der y-Achse.
  • Ein Y-Achsenabschnitt ist immer an der x-Koordinate x=0.
  • Einen Y-Achsenabschnitt kannst Du berechnen, indem Du in die Funktion 0 einsetzt und sie ausmultiplizierst.
  • Einen Y-Achsenabschnitt kannst Du bestimmen, indem Du im Koordinatensystem entlang der y-Achse gehst und dann die Schnittstelle abliest. Diese Schnittstelle wandelst Du noch in einen Punkt P um.
  • Y-Achsenabschnitt berechnen mit zwei gegeben Punkten:

    Du musst, um den Y-Achsenabschnitt zu berechnen, erst die Geradengleichung bestimmen und danach 0 in die Funktionsgleichung einsetzen. Dann hast Du den y-Wert, der noch in einen Punkt umgewandelt werden muss.


Nachweise

  1. Flotho (2021): Wirtschaftsmathematik. Springer Gabler.
  2. Pampel (2017): Geraden und Parabeln. Springer.

Häufig gestellte Fragen zum Thema y-Achsenabschnitt

Einen Y-Achsenabschnitt wird berechnet, indem in die Funktion die Zahl 0 eingesetzt und ausmultipliziert wird. Dadurch wird der y-Wert berechnet, der dann noch mit dem x-Wert (x=0) in einen Punkt P umgeformt wird.

Der Y-Achsenabschnitt ist der Schnittpunkt P einer Funktion mit der y-Achse. 

Ein Y-Achsenabschnitt ist immer an der x-Koordinate: x=0.

Den Y-Achsenabschnitt liest Du ab, indem Du im Koordinatensystem entlang der y-Achse gehst und dann den Schnittpunkt der Funktion mit der y-Achse abliest. 

Ein Y-Achsenabschnitt kann auch bestimmt werden, wenn Du eine Funktion gegeben hast und den Parameter t abliest, denn t ist der y-Achsenabschnitt einer linearen Funktion ( f(x)=mx+t ). 

Finales y-Achsenabschnitt Quiz

y-Achsenabschnitt Quiz - Teste dein Wissen

Frage

Was ist ein Y-Achsenabschnitt?

Antwort anzeigen

Antwort

Der Schnittpunkt einer Funktion  mit der y-Achse

Frage anzeigen

Frage

Wie wird ein Y-Achsenabschnitt einer Funktion  berechnet?

Antwort anzeigen

Antwort

Einen Y-Achsenabschnitt kannst Du berechnen, indem Du in die gegebene Funktion 0 einsetzt und sie ausmultiplizierst. Der errechnete y-Wert ist der Y-Achsenabschnitt, der nur noch in einen Punkt umgewandelt werden muss, in dem man den y-Wert nimmt und den x-Wert 

Frage anzeigen

Frage

Berechne den Y-Achsenabschnitt der quadratischen Funktion .

Antwort anzeigen

Antwort

Um den Y-Achsenabschnitt zu berechnen, musst Du 0 in die Funktion einsetzen.



Der Y-Achsenabschnitt der Funktion ist und der Schnittpunkt mit der y-Achse ist .

Frage anzeigen

Frage

Wie bestimmst Du einen Y-Achsenabschnitt der Funktion .

Antwort anzeigen

Antwort

Einen Y-Achsenabschnitt bestimmst Du, indem Du im Koordinatensystem entlang der y-Achse gehst und dann die Schnittstelle abliest. Diese Schnittstelle wandelst Du noch in einen Punkt P um.

Frage anzeigen

Frage

Bestimme den Y-Achsenabschnitt der folgenden Funktion :



Antwort anzeigen

Antwort

Du gehst jetzt entlang der y-Achse und markierst den Schnittpunkt P der linearen Funktion mit der Achse.



An der Abbildung erkennst Du, dass der Y-Achsenabschnitt an der Stelle ist. Das führt zu dem Schnittpunkt .


Die lineare Funktion  hat ihren Y-Achsenabschnitt an dem Punkt .


Frage anzeigen

Frage

Bestimme den Y-Achsenabschnitt der linearen Funktion .

Antwort anzeigen

Antwort

Du liest den y-Achsenabschnitt der Funktion ab. Der y-Achsenabschnitt ist der Parameter t in der Funktion.



Der y-Achsenabschnitt der Funktion  ist an dem y-Wert . Zuletzt muss der y-Wert in einen Punkt umgewandelt werden.


 

Somit liegt der y-Achsenabschnitt liegt bei .

Frage anzeigen

Frage

Wie gehst Du vor, wenn Du einen Y-Achsenabschnitt einer linearen Funktion  berechnen musst, Dir aber nur zwei Punkte gegeben sind? 

Antwort anzeigen

Antwort

Du musst, um den Y-Achsenabschnitt zu berechnen, erst die Geradengleichung  berechnen und danach 0 in die Funktionsgleichung einsetzen. Dann hast Du den y-Wert, der noch in einen Punkt umgewandelt werden muss.

Frage anzeigen

Frage

Wie wird eine Geradengleichung  aufgestellt?

Antwort anzeigen

Antwort

Eine Geradengleichung  kann mithilfe zweier Punkte aufgestellt werden.


  1. Zuerst werden die x- und y-Werte der gegebenen Punkte P und Q in die Formel zur Berechnung der Steigung eingesetzt.
  2. Sobald Du die Steigung berechnet hast, musst Du diese in die rohe Form der linearen Funktion () einsetzen.
  3. In diese Funktion setzt Du nun einen der beiden Punkte P und Q ein.
  4. Nach dem Einsetzen stellst Du die Funktionsgleichung nach t um.
  5. Der errechnete Wert ist der y-Achsenabschnitt, welchen Du nur noch in die Funktion  einsetzen musst.
  6. Die zusammengesetzte Funktion  ist jetzt Deine Gerade.

Frage anzeigen

Frage

Wie lautet die Steigungsformel?

Antwort anzeigen

Antwort

Die Steigungsformel lautet:



Frage anzeigen

Frage

Stelle die Geradengleichung einer Funktion  mithilfe zweier Punkte  und  auf und berechne den zugehörigen Y-Achsenabschnitt.

Antwort anzeigen

Antwort

Zuerst setzt Du die beiden Punktkoordinaten in die Steigungsformel ein.



Dieser Wert wird jetzt in die Form der linearen Funktion eingesetzt, um den Y-Achsenabschnitt zu ermitteln.



 

Um den Y-Achsenabschnitt zu ermitteln, wird jetzt der Punkt   eingesetzt und nach t umgestellt.



Diese Werte werden jetzt in die Geradengleichung  eingesetzt.



Jetzt, beim Berechnen des Y-Achsenabschnitts, musst Du 0 in die Funktionsgleichung der linearen Funktion einsetzen.




Der y-Achsenabschnitt liegt bei . Dieser Wert muss noch in einen Punkt umgewandelt werden. Da und ist der Schnittpunkt der linearen Funktion  mit der y-Achse bei .


Frage anzeigen

Mehr zum Thema y-Achsenabschnitt
60%

der Nutzer schaffen das y-Achsenabschnitt Quiz nicht! Kannst du es schaffen?

Quiz starten

Wie möchtest du den Inhalt lernen?

Karteikarten erstellen
Inhalte meiner Freund:innen lernen
Ein Quiz machen

94% der StudySmarter Nutzer erzielen bessere Noten.

Jetzt anmelden

94% der StudySmarter Nutzer erzielen bessere Noten.

Jetzt anmelden

Wie möchtest du den Inhalt lernen?

Karteikarten erstellen
Inhalte meiner Freund:innen lernen
Ein Quiz machen

Kostenloser mathe Spickzettel

Alles was du zu . wissen musst. Perfekt zusammengefasst, sodass du es dir leicht merken kannst!

Jetzt anmelden

Finde passende Lernmaterialien für deine Fächer

Alles was du für deinen Lernerfolg brauchst - in einer App!

Lernplan

Sei rechtzeitig vorbereitet für deine Prüfungen.

Quizzes

Teste dein Wissen mit spielerischen Quizzes.

Karteikarten

Erstelle und finde Karteikarten in Rekordzeit.

Notizen

Erstelle die schönsten Notizen schneller als je zuvor.

Lern-Sets

Hab all deine Lermaterialien an einem Ort.

Dokumente

Lade unzählige Dokumente hoch und habe sie immer dabei.

Lern Statistiken

Kenne deine Schwächen und Stärken.

Wöchentliche

Ziele Setze dir individuelle Ziele und sammle Punkte.

Smart Reminders

Nie wieder prokrastinieren mit unseren Lernerinnerungen.

Trophäen

Sammle Punkte und erreiche neue Levels beim Lernen.

Magic Marker

Lass dir Karteikarten automatisch erstellen.

Smartes Formatieren

Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.

Melde dich an für Notizen & Bearbeitung. 100% for free.

Fang an mit StudySmarter zu lernen, die einzige Lernapp, die du brauchst.

Jetzt kostenlos anmelden
Illustration