Select your language

Suggested languages for you:
Log In Anmelden
StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
|
|

Die All-in-one Lernapp:

  • Karteikarten
  • NotizenNotes
  • ErklärungenExplanations
  • Lernpläne
  • Übungen
App nutzen

Ableitung Umkehrfunktion

Save Speichern
Print Drucken
Edit Bearbeiten
Melde dich an und nutze alle Funktionen. Jetzt anmelden
Mathe

Es gibt Funktionen, bei denen die Ableitung über die Umkehrfunktion bestimmt werden muss. Dies ist z. B. bei den trigonometrischen (Arcusfunktionen) und den hyperbolischen (Areafunktionen) der Fall. Wie Du diese Ableitungen bildest, erfährst Du in diesem Artikel.

Ableitung Umkehrfunktion Grundlagenwissen

Um eine Umkehrfunktion zu bilden, benötigst Du eine Funktion.

Eine Funktion ist eine Gleichung, die jedem x-Wert einen eindeutigen y-Wert zuordnet. Eine Funktion sieht wie folgt aus:

Ableitung Umkehrfunktion Funktion StudySmarter

Statt f kannst Du auch einen beliebigen anderen Buchstaben verwenden.

Tom hat eine Packung Kekse und möchte sie gerecht auf seine 3 Freunde aufteilen. Wie viele Kekse erhält, je nachdem wie viele Kekse insgesamt in der Packung sind?

Die Gleichung für dieses Beispiel lautet:

Dabei stellt x die Anzahl der Kekse dar. Diese Gleichung kannst Du auch als Funktion schreiben, weil jedem y-Wert ein x-Wert zugeordnet werden kann. Die Funktion lautet dann:

Du kannst sie in ein Koordinatensystem einzeichnen und für jeden x-Wert den zugehörigen y-Wert ablesen.

Ableitung Umkehrfunktion Funktion f(x) StudySmarterAbbildung 1: Funktion f(x)

Umkehrfunktion berechnen

Die oben erhaltene Funktion kannst Du auch umdrehen. Wenn Du dies tust, ändern sich auch die Eigenschaften der Funktion.

Die Umkehrfunktion der Funktion ordnet die Variablen umgekehrt zu.

Das heißt, die Funktion ordnet jedem x-Wert einen y-Wert zu, während die Umkehrfunktion genau das Gegenteil tut, also jedem y-Wert einen x-Wert zuordnet.


Nur Funktionen, die durchgehend differenzierbar sind, können umgekehrt werden! Das heißt, wenn eine Funktion an einer Stelle mehrere oder gar keine y-Werte für einen x-Wert hat, kann sie nicht umgekehrt werden.

Um eine Funktion umzukehren, gehst Du wie folgt vor:

  1. Ersetze f(x) durch y.
  2. Löse die Funktion nach x auf.
  3. Ersetze jedes x durch ein y und umgekehrt.
  4. Ersetze x durch f-1(x).

Um das obige Beispiel mit den Keksen weiterzuführen, kannst Du nun die Umkehrfunktion davon bilden. Die ursprüngliche Funktion lautete:

Befolge die oben genannten Schritte, um die Umkehrfunktion zu bilden.

1. Ersetze f(x) durch y.
2. Löse nach x auf.
3. Ersetze x durch y und umgekehrt.
4. Ersetze x durch f-1(x).
Die Umkehrfunktion von lautet also .

Ableitung Umkehrfunktion Graph Umkehrfunktion StudySmarterAbbildung 2: Umkehrfunktion von f(x)

Am Graphen von f(x) kannst Du ablesen, wie viele Kekse jede Person bekommt, wenn beispielsweise 3 Kekse in der Packung sind. Am Graphen von f-1(x) kannst Du hingegen ermitteln, wie viele Kekse in der Packung sind, wenn jeder nur einen Keks bekommt.

Wenn Du einen x-Wert in die ursprüngliche Funktion einsetzt, erhältst Du den zugehörigen y-Wert. Die Umkehrfunktion tauscht diese Beziehung. Du kannst also einen y-Wert einsetzen und bekommst den dazugehörigen x-Wert.

Wenn Du Dir Abbildung 2 anschaust, kannst Du beobachten, dass f(x) an der Winkelhalbierenden des 1. Quadranten gespiegelt wurde, um f-1(x) zu erhalten.

Ableitung Umkehrfunktion Umkehrfunktion Spiegelung an Winkelhalbierende StudySmarterAbbildung 3: Spiegelung an Winkelhalbierender

Für konstante Funktionen gibt es keine Umkehrfunktion, denn eine konstante Funktion ordnet einem y-Wert unendlich viele x-Werte zu, sie ist also nicht eindeutig.

Um nun herauszufinden, warum die Ableitung des Logarithmus ergibt, kannst Du seine Umkehrfunktion ableiten.

Ableitung der Umkehrfunktion

Im Folgenden erfährst Du, wie die Ableitung der Umkehrfunktion ermittelt wird.

Beim Ableiten gibt es gewisse Regeln, die es zu beachten gilt:

RegelPrinzipBeispiel
Ableitung einer Konstanten
Ableitung von x
Potenzregel

Faktorregel

Summenregel

Differenzregel

Produktregel

Quotientenregel

Kettenregel

Daneben gibt es noch Regeln für Spezialfälle, wie zum Beispiel der Logarithmus- oder der Wurzelfunktion. Um mehr dazu zu erfahren, schau einfach in den Artikel zu den Ableitungsregeln rein.

Herleitung der Umkehrregel

Die eben genannten Regeln benötigst Du, um die Umkehrfunktion abzuleiten.

ist eine gebrochen rationale Funktion, also wendest Du die Quotientenregel an:

Die Umkehrfunktion wurde weiter oben schon bestimmt. Nun leitest Du diese ab:

Den Zusammenhang zwischen der Ableitung der Umkehrfunktion und der Ableitung der ursprünglichen Funktion erfährst Du im Folgenden.

Umkehrregel

Die Ableitung der ursprünglichen Funktion lautet und die Ableitung der Umkehrfunktion ist 3. Um auf die Ableitung der ursprünglichen Funktion zu kommen, musst Du 1 durch die Umkehrfunktion teilen.

Umkehrregel: Wenn eine Funktion ist, die Du ableiten kannst und die entsprechende Umkehrfunktion ist, dann gilt für die Ableitung der Umkehrfunktion:

Ableitung Umkehrfunktion Umkehrregel StudySmarter

Diese Formel eignet sich besonders für Funktionen, die keine Polynomfunktionen sind, da sie in diesem Fall die Berechnung enorm verkürzt.

Schau Dir dazu noch einmal das Beispiel von oben an. Du hättest die Ableitung der Umkehrfunktion auch wie folgt ausrechnen können:

Zur Kontrolle kannst Du die Umkehrfunktion zusätzlich auf dem klassischen Weg ableiten:

Die Ergebnisse stimmen bei beiden Rechenwegen überein.

Beweis der Umkehrregel

Um die Ableitung der Umkehrfunktion zu bilden, erweitert sich die Schritt-für-Schritt-Anleitung:

  1. Ersetze f(x) durch y.
  2. Löse die Funktion nach x auf.
  3. Ersetze jedes x durch ein y und umgekehrt.
  4. Ersetze x durch f-1(x).
  5. Vertausche f(x) und f-1(x)
  6. Leite die neue Funktion f(x) ab.
  7. Berechne die Ableitung mithilfe der Formel
  8. Tausche f(x) und f-1(x) zurück.

Da Du mit der Umkehrregel die Ableitung der Umkehrfunktion berechnest, muss die ursprüngliche Funktion und die Umkehrfunktion vertauscht werden, um die Ableitung der ursprünglichen Funktion zu erhalten.

Nun kannst Du nachrechnen, weshalb die Ableitung der Logarithmusfunktion ergibt.

Dazu kannst Du Dir die unterschiedlichen Schritte zur Bildung der Umkehrfunktion zur Hilfe nehmen:

1. Ersetze f(x) durch y.
2. Löse nach x auf.

Wenn Du Dich fragst, warum eln(x) zu x wird, schau gerne im Artikel "Logarithmusfunktionen" vorbei.

3. Vertausche x und y.
4. Ersetze y durch f-1(x).
5. Vertausche f(x) und f-1(x)
6. Leite f(x) ab.
7. Berechne die Ableitung mithilfe der Formel.
8. Tausche f(x) und f-1(x) zurück.

Folgende Abbildung stellt dar, dass die Umkehrfunktion an der Winkelhalbierenden gespiegelt wird.

Ableitung Umkehrregel Beweis StudySmarterAbbildung 4: Beweis der Umkehrregel

Hier kannst Du auch nachprüfen, ob die errechnete Ableitung stimmt. Bei ist die Steigung von unendlich groß, also ist der y-Wert der Ableitung an dieser Stelle ebenfalls unendlich groß. Mit steigenden x-Werten flacht die Steigung von immer weiter ab, sodass sich der Graph der Ableitung immer weiter der 0 annähert. Die Ableitung, die Du über die Umkehrfunktion errechnet hast, stimmt also.

Ableitung der Umkehrfunktion Aufgaben

Nachfolgend findest Du noch einige Übungsaufgaben.

Aufgabe 1

Bestimme die Ableitung von mithilfe der Umkehrfunktion.

Lösung


1. Ersetze f(x) durch y.
2. Löse nach x auf.
3. Vertausche x und y.
4. Ersetze y durch f-1(x).
5. Vertausche f(x) und f-1(x)
6. Leite f(x) ab.
7. Berechne die Ableitung mithilfe der Formel.
8. Tausche f(x) und f-1(x) zurück.

Aufgabe 2

Berechne die Ableitung von .

Lösung


1. Ersetze f(x) durch y.
2. Löse nach x auf.
3. Vertausche x und y.
4. Ersetze y durch f-1(x).
5. Vertausche f(x) und f-1(x)
6. Leite f(x) ab.
7. Berechne die Ableitung mithilfe der Formel.
8. Tausche f(x) und f-1(x) zurück.

Aufgabe 3

Bilde die Ableitung der Funktion . Wendest Du die Quotienten- oder die Umkehrregel an?

Lösung

Hier kannst Du die Umkehrregel nicht anwenden, da es sich um eine Parabelfunktion handelt, die jedem y-Wert (außer dem Scheitelpunkt) jeweils zwei x-Werte zuordnet.

Die Ableitung mithilfe der Quotientenregel lautet:

Ableitung Umkehrfunktion - Das Wichtigste

  • Eine Umkehrfunktion ist die Spiegelung einer Funktion an der Winkelhalbierenden des ersten Quadranten.
  • Die Ableitung der Umkehrfunktion kannst Du nutzen, um trigonometrische und hyperbolische Funktionen abzuleiten.
  • Dazu kannst Du nach folgenden Schritten gehen:
    1. Ersetze f(x) durch y.
    2. Löse die Funktion nach x auf.
    3. Ersetze jedes x durch ein y und umgekehrt.
    4. Ersetze x durch f-1(x).
    5. Vertausche f(x) und f-1(x)
    6. Leite die neue Funktion f(x) ab.
    7. Berechne die Ableitung mithilfe der Formel
    8. Tausche f(x) und f-1(x) zurück.
  • Eine Funktion ist allerdings nur umkehrbar, wenn sie jedem y-Wert einen eindeutigen x-Wert zuweist.

Ableitung Umkehrfunktion

Eine Funktion ist umkehrbar, wenn sie an jeder Stelle im Definitionsbereich differenzierbar und eindeutig ist.

Die Umkehrfunktion berechnest Du, indem Du die Funktion nach x auflöst und dann x und y vertauschst.

Bilde die Umkehrfunktion und leite die ursprüngliche Funktion ab. Danach setzt Du die Umkehrfunktion in die Ableitung ein und nimmst den Kehrwert von Deinem Ergebnis. Das ist die Ableitung der Umkehrfunktion.

Finales Ableitung Umkehrfunktion Quiz

Frage

Bei welchen Funktionen macht die Ableitung über die Umkehrfunktion sinn?

Antwort anzeigen

Antwort

hyperbolische Funktionen

Frage anzeigen

Frage

Muss eine Funktion immer f(x) heißen?

Antwort anzeigen

Antwort

Nein, Du kannst auch jeden beliebigen anderen Buchstaben anstatt f nehmen.

Frage anzeigen

Frage

Was ändert sich, wenn Du eine Funktion umdrehst?

Antwort anzeigen

Antwort

Die Umkehrfunktion ordnet die Variablen umgekehrt zu. Das heißt, während die Funktion f(x)  jedem x-Wert einen y-Wert zuordnet, tut es die Umkehrfunktion genau anders herum.

Frage anzeigen

Frage

Welche Eigenschaften muss eine Funktion haben, damit sie umgekehrt werden kann?

Antwort anzeigen

Antwort

Eine Funktion muss durchgehend differenzierbar und an jeder Stelle im Definitionsbereich eindeutig sein, damit sie umgekehrt werden kann.

Frage anzeigen

Frage

Wie gehst Du vor, wenn Du eine Funktion umkehren willst?

Antwort anzeigen

Antwort

  1. Ersetze f(x) durch y.
  2. Löse die Funktion nach x auf.
  3. Ersetze jedes x durch ein y und umgekehrt.
  4. Ersetze x durch f-1(x).
Frage anzeigen

Frage

Was fällt auf, wenn Du f(x) und f-1(x) in ein Koordinatensystem einzeichnest?

Antwort anzeigen

Antwort

f-1(x) ist die Spiegelung von f(x) an der Winkelhalbierenden des 1. Quadranten.

Frage anzeigen

Frage

Mit der Umkehrregel kannst Du die Ableitung der Umkehrfunktion berechnen. Was bringt Dir das?

Antwort anzeigen

Antwort

Du kannst die Umkehrfunktion und die ursprüngliche Funktion vertauschen und somit die Ableitung der ursprünglichen Funktion berechnen. Auf diesem Weg kannst Du beispielsweise die Ableitung der Logarithmusfunktion oder einer Wurzel berechnen.

Frage anzeigen
60%

der Nutzer schaffen das Ableitung Umkehrfunktion Quiz nicht! Kannst du es schaffen?

Quiz starten

Finde passende Lernmaterialien für deine Fächer

Alles was du für deinen Lernerfolg brauchst - in einer App!

Lernplan

Sei rechtzeitig vorbereitet für deine Prüfungen.

Quizzes

Teste dein Wissen mit spielerischen Quizzes.

Karteikarten

Erstelle und finde Karteikarten in Rekordzeit.

Notizen

Erstelle die schönsten Notizen schneller als je zuvor.

Lern-Sets

Hab all deine Lermaterialien an einem Ort.

Dokumente

Lade unzählige Dokumente hoch und habe sie immer dabei.

Lern Statistiken

Kenne deine Schwächen und Stärken.

Wöchentliche

Ziele Setze dir individuelle Ziele und sammle Punkte.

Smart Reminders

Nie wieder prokrastinieren mit unseren Lernerinnerungen.

Trophäen

Sammle Punkte und erreiche neue Levels beim Lernen.

Magic Marker

Lass dir Karteikarten automatisch erstellen.

Smartes Formatieren

Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.

Melde dich an für Notizen & Bearbeitung. 100% for free.