Select your language

Suggested languages for you:
Log In Anmelden
StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
|
|

Die All-in-one Lernapp:

  • Karteikarten
  • NotizenNotes
  • ErklärungenExplanations
  • Lernpläne
  • Übungen
App nutzen

Schnittpunkt zweier Geraden

Save Speichern
Print Drucken
Edit Bearbeiten
Melde dich an und nutze alle Funktionen. Jetzt anmelden
Schnittpunkt zweier Geraden

Schneiden sich zwei Geraden in einem Punkt, entsteht ein Schnittpunkt. Es gibt unterschiedliche Herangehensweisen, diesen Schnittpunkt zu bestimmen. In diesem Artikel erfährst Du alles darüber, wie Du einen Schnittpunkt berechnest und welche Sonderfälle es bei Schnittpunkten zweier Geraden gibt.

Hinweis: In diesem Artikel geht es um den Schnittpunkt zweier Geraden im zweidimensionalen Koordinatensystem. Möchtest Du lernen, wie man den Schnittpunkt zweier Geraden im dreidimensionalen Koordinatensystem berechnet, dann findest Du alle Informationen dazu im Abschnitt analytische Geometrie im Bereich der Geometrie.

Schnittpunkt Definition

Was genau ist denn eigentlich ein Schnittpunkt?

Ein Schnittpunkt Schnittpunkt zweier Geraden Definition Schnittpunkt StudySmarter ist ein gemeinsamer Punkt zweier Funktionen f und g.

Der Schnittpunkt S liegt also sowohl auf der Funktion f, als auch auf der Funktion g. Also sind f und g im Punkt S gleich.

Schnittpunkt zweier Geraden, Definition Schnittpunkt, StudySmarter

Abbildung 1: Der Schnittpunkt

Schnittpunkt zweier Geraden berechnen

Um den Schnittpunkt zweier Geraden f und g zu bestimmen, gibt es zwei verschiedene Wege. Der einfachere ist die grafische oder zeichnerische Bestimmung. Dieses Vorgehen hat aber den Nachteil, dass Du extrem sorgfältig zeichnen musst und manchmal der Schnittpunkt nur schlecht abgelesen werden kann. Eine Alternative stellt hier die Berechnung des Schnittpunkts dar.

Schnittpunkt zweier Geraden zeichnen

Das Vorgehen ist folgendes:

  1. Zunächst zeichnest Du beide Funktionen in ein Koordinatensystem ein. Dafür kannst Du zum Beispiel eine Wertetabelle anlegen und dann alle Wertepunkte in das Koordinatensystem eintragen.
  2. Danach liest Du den Schnittpunkt S beider Geraden im Koordinatensystem ab und gibst ihn an.

Gegeben sind die beiden Funktionen Schnittpunkt zweier Geraden, Formel, StudySmarter und Schnittpunkt zweier Geraden, Formel, StudySmarter.

Werden sie in ein Koordinatensystem eingezeichnet, sollte das so aussehen:

Schnittpunkt zweier Geraden, Schnittpunkt ermitteln, StudySmarter

Abbildung 2: Geraden f und g im Koordinatensystem
Abbildung 1: Der Schnittpunkt

Dann kannst Du den Schnittpunkt ablesen.

Schnittpunkt zweier Geraden, Schnittpunkt ablesen, StudySmarter

Abbildung 3: Schnittpunkt ablesen

In diesem Beispiel ist das Ablesen des Schnittpunkts sehr einfach, denn er liegt genau auf einem Gitterpunkt. Manchmal ist das aber nicht der Fall.

Schnittpunkt zweier Geraden, Berechnung Schnittpunkt ,StudySmarter

Abbildung 4: Schnittpunkt ablesen

Hier kann der Schnittpunkt nicht so einfach abgelesen werden. Dann bietet es sich an, den Schnittpunkt auszurechnen.

Schnittpunkt zweier Geraden berechnen

Das Vorgehen zur Berechnung des Schnittpunkts besteht aus vier Schritten:

  1. Als Erstes setzt Du die Funktionsgleichungen gleich.

  2. Dann löst Du die Gleichung nach x auf. So erhältst Du den x-Wert des Schnittpunkts.

  3. Den berechneten x-Wert setzt Du in eine der beiden Funktionsgleichungen ein und erhältst so den y-Wert des Schnittpunkts.

  4. Zum Überprüfen kannst Du den x-Wert aus Schritt 2 auch in die zweite Funktionsgleichung einsetzen. Hier sollte derselbe y-Wert herauskommen. Alternativ kannst Du auch den berechneten Schnittpunkt in die zweite Funktionsgleichung einsetzen und prüfen, ob eine gültige Gleichung herauskommt.

Gegeben sind wieder die beiden Funktionen Schnittpunkt zweier Geraden, Formel, StudySmarter und Schnittpunkt zweier Geraden, Formel, StudySmarter. Überprüfe nun rechnerisch, ob der Schnittpunkt, den Du eben zeichnerisch ermittelt hast, richtig ist.

Schritt 1: Setze die Funktionen gleich.

Schnittpunkt zweier Geraden, Formel, StudySmarter

Schritt 2: Löse diese Gleichung nach x auf.

Schnittpunkt zweier Geraden, Formel, StudySmarter

Falls Dir nicht ganz klar ist, wie Du Gleichungen dieser Art auflöst, dann kannst Du mal in den Artikel Lösen von Gleichungen schauen!

Schritt 3: Den berechneten x-Wert setzt Du jetzt in die Funktionsgleichung der Funktion f(x) ein.

Schnittpunkt zweier Geraden, Funktionsgleichung, StudySmarter

Der berechnete Schnittpunkt hat also die y-Koordinate 2. Er ist also, so wie Du es zeichnerisch gesehen hast.

Schritt 4: Zum Schluss kannst Du dieses Ergebnis noch überprüfen.

  • Methode 1: Der x-Wert 1 wird in die Funktionsgleichung der Funktion g(x) eingesetzt:

Schnittpunkt zweier Geraden, Funktionsgleichung, StudySmarter

  • Methode 2: Der Schnittpunkt wird in die Funktionsgleichung der Funktion g(x) eingesetzt und es muss eine wahre Aussage herauskommen.

Schnittpunkt zweier Geraden, Funktionsgleichung, StudySmarter

Schnittpunkt zweier Geraden – Sonderfälle

Zwei Geraden schneiden sich aber nicht unbedingt in einem Punkt. Es gibt zwei Sonderfälle. Außerdem können sich zwei Geraden in einem besonderen Winkel schneiden.

Sonderfall 1: Es gibt keinen Schnittpunkt

Du weißt bestimmt schon, dass die allgemeine Funktionsgleichung von lineare Funktionen Schnittpunkt zweier Geraden, Funktion, StudySmarter lautet. Dabei ist m die Steigung der Funktion und t der y-Achsenabschnitt.

Manchmal wird das t auch mit einem anderen Buchstaben benannt. Beispielsweise b. Es handelt sich dabei aber immer um den Schnittpunkt mit der y-Achse, also dem y-Achsenabschnitt.

Haben zwei lineare Funktionen nun dieselbe Steigung m, aber unterschiedliche y-Achsenabschnitte, dann verlaufen ihre Graphen parallel.

Zwei Geraden sind genau dann parallel, wenn gilt: Schnittpunkt zweier Geraden, Gleichung, StudySmarter

Verlaufen zwei Geraden parallel, dann können sie sich niemals schneiden.

Schnittpunkt zweier Geraden, parallele Geraden, StudySmarter

Abbildung 5: Parallele Geraden

Wenn Du also bemerkst, dass die Steigung zweier linearer Funktionen gleich ist und ihr y-Achsenabschnitt unterschiedlich, so kannst Du direkt folgern, dass die Geraden parallel sind und keinen Schnittpunkt haben können.

Aufgabe 1

Entscheide, ob die folgenden Geradenpaare einen Schnittpunkt haben.

  1. Schnittpunkt zweier Geraden, Funktion, StudySmarter
  2. Schnittpunkt zweier Geraden, Funktion, StudySmarter
  3. Schnittpunkt zweier Geraden, Funktion, StudySmarter

Lösung

  1. f und g haben dieselbe Steigung m=2, jedoch unterschiedliche y-Achsenabschnitte. Sie sind also parallel und haben somit keinen Schnittpunkt.
  2. h und k haben auch dieselbe Steigung, denn es gilt: Schnittpunkt zweier Geraden, Gleichung, StudySmarter (der Bruch kann mit 3 gekürzt werden). Zudem sind die y-Achsenabschnitte unterschiedlich. Die Geraden sind also auch parallel und haben keinen Schnittpunkt.
  3. Die Steigung der Gerade s ist 2, die Steigung der Geraden t jedoch -2. Sie sind also unterschiedlich. Somit schneiden sich die Geraden in einem Punkt.

Falls Du nicht direkt anhand der Steigung und des y-Achsenabschnitts siehst, dass zwei Geraden parallel verlaufen müssen, stolperst Du meistens schon im 2. Schritt, aber spätestens im 3. Schritt Deiner Berechnung darüber. Dort erhältst Du dann eine falsche Gleichung und kannst daraus folgern, dass es keinen Schnittpunkt gibt.

Gegeben sind die Funktionen Schnittpunkt zweier Geraden, Funktion, StudySmarter und Schnittpunkt zweier Geraden, Funktion, StudySmarter. Bestimme den Schnittpunkt der beiden Geraden.

Schritt 1: Setze die Funktionsgleichungen gleich:

Schnittpunkt zweier Geraden, Funktionsgleichung, StudySmarter

Schritt 2: Löse nach x auf.

Schnittpunkt zweier Geraden, Funktion auflösen, StudySmarter

Die Aussage, dass 0=2 gilt, stimmt natürlich nicht. h und k haben also keinen gemeinsamen Punkt und verlaufen somit parallel.

Sonderfall 2: Es gibt unendlich viele Schnittpunkte

Wenn nicht nur die Steigung zweier Funktionen identisch ist, sondern auch der y-Achsenabschnitt t, dann sind beide Geraden deckungsgleich oder identisch. Sie haben also unendlich viele gemeinsame Punkte.

Zwei Geraden sind, genau dann identisch, wenn gilt: Schnittpunkt zweier Geraden identische Geraden StudySmarter und Schnittpunkt zweier Geraden identische Geraden StudySmarter.

Schnittpunkt zweier Geraden, identische Geraden, StudySmarter

Abbildung 6: identische Geraden

Auch hier gibt es zwei Möglichkeiten, diesen Fall nachzuweisen:

  1. Durch den Vergleich von Steigung und y-Achsenabschnitt: sind beide gleich, sind auch die Funktionen identisch. Ihre Graphen haben somit unendlich viele Schnittpunkte.

  2. Rechnerisch: Hier ergibt sich in Schritt 2 eine Gleichung, die immer richtig ist.

Überprüfe rechnerisch, ob die Graphen der Funktionen Schnittpunkt zweier Geraden, Funktion, StudySmarter und Schnittpunkt zweier Geraden, Funktion, StudySmarter einen Schnittpunkt haben.

Schritt 1: Gleichsetzen der Funktionsgleichungen.

Schnittpunkt zweier Geraden, Funktionsgleichung, StudySmarter

Schritt 2: Auflösen nach x: da gilt Schnittpunkt zweier Geraden, Funktionsgleichung, StudySmarter, folgt

Schnittpunkt zweier Geraden, Funktionsgleichung, StudySmarter

Die Aussage 2 = 2 stimmt. Daher sind die Funktionen s(x) und t(x) identisch und ihre Graphen haben unendlich viele Schnittpunkte.

Sonderfall 3: Die Geraden schneiden sich orthogonal

Ein weiterer Sonderfall bei Schnittpunkten ist, wenn sich beide Funktionen orthogonal schneiden.

Orthogonal bedeutet dasselbe wie rechtwinklig.

Im Koordinatensystem erkennst Du dies also daran, dass zwischen beiden Geraden ein rechter Winkel (90°) vorliegt. Die Geraden stehen also senkrecht aufeinander.

Schnittpunkt zweier Geraden, orthogonale Geraden, StudySmarterAbbildung 7: zwei orthogonale Geraden

Rechnerisch kannst Du die Orthogonalität durch die Steigungen der beiden Funktionen zeigen:

Es gilt: stehen zwei Geraden senkrecht aufeinander, dann gilt: Schnittpunkt zweier Geraden orthogonale Geraden StudySmarter.

Es wird also das Produkt der beiden Steigungen gebildet. Ergibt es -1, so schneiden sich die Geraden orthogonal.

Wenn Du allgemein den Schnittwinkel zweier Geraden berechnen möchtest, schau mal beim Artikel Winkel zwischen Geraden vorbei!

Aufgabe 2

Gesucht wird die Funktionsgleichung einer Geraden f, die orthogonal zuSchnittpunkt zweier Geraden, Funktion, StudySmartersteht und die y-Achse bei 5 schneidet.

Lösung

Es muss gelten: Schnittpunkt zweier Geraden, Funktionsgleichung, StudySmarter. Diese Gleichung kann nach der Steigung aufgelöst werden:

Schnittpunkt zweier Geraden, Funktionsgleichung, StudySmarter

Der y-Achsenabschnitt t soll 5 sein. Damit sieht die Funktionsgleichung wie folgt aus:

Schnittpunkt zweier Geraden, Funktion, StudySmarter

Schnittpunkt zweier Geraden Aufgaben

Jetzt ist es Zeit, die Inhalte dieses Kapitels einzuüben. Dazu kannst Du Dir die folgenden zwei Aufgaben anschauen.

Aufgabe 3

Gesucht ist der Schnittpunkt P von folgenden Funktionen:

Schnittpunkt zweier Geraden, Funktionen, StudySmarter

Lösung

Wir berechnen die Lösung. Dazu setzt Du die Funktionsgleichungen auf und löst sie nach x auf.

Schnittpunkt zweier Geraden, Funktionsgleichung auflösen, StudySmarter

Nun setzt Du den x-Wert in g(x) ein, um den y-Wert des Schnittpunkts zu errechnen:

Schnittpunkt zweier Geraden, Funktionsgleichung, StudySmarter

Gib den Schnittpunkt an:Schnittpunkt zweier Geraden, Schnittpunkt, StudySmarter

Aufgabe 4

Gesucht wird eine zuSchnittpunkt zweier Geraden, Gleichung, StudySmarterparallele Gerade.

Lösung

Die Steigungen beider Funktionen müssen gleich sein. Jede Funktionsgleichung, bei der die Steigung m = 2 ist, ist eine richtige Lösung.

Zum Beispiel:Schnittpunkt zweier Geraden, Funktion, StudySmarter

Schnittpunkt zweier Geraden, Übungsaufgabe, StudySmarterAbbildung 8: Geraden r und s

Schnittpunkt zweier Geraden - Das Wichtigste

  • Ein Schnittpunkt ist ein gemeinsamer Punkt zweier Funktionen
  • Den Schnittpunkt zweier Geraden kann man zeichnerisch ermitteln oder berechnen
  • Um den Schnittpunkt zeichnerisch zu finden, müssen die gegebenen Funktionen in ein Koordinatensystem gezeichnet werden, und anschließend der Schnittpunkt abgelesen werden.
  • Um den Schnittpunkt zu berechnen, gehst Du wie folgt vor:
    1. Funktionsgleichungen gleichsetzen
    2. Gleichung nach x auflösen
    3. x in eine Funktion einsetzen, um y herauszufinden
    4. Schnittpunkt S(x|y) angeben
  • Sind zwei Geraden parallel, so haben sie die gleiche Steigung und keinen Schnittpunkt.
  • Sind zwei Geraden identisch, so haben sie dieselbe Steigung und denselben y-Achsenabschnitt und unendlich viele Schnittpunkte
  • Zwei Geraden stehen orthogonal zueinander, wenn das Produkt beider Steigungen -1 beträgt

Häufig gestellte Fragen zum Thema Schnittpunkt zweier Geraden

  1. Funktionsgleichungen gleichsetzen
  2. Gleichung nach x auflösen
  3. x in eine Funktion einsetzen um y herauszufinden
  4. Schnittpunkt S(x|y) angeben

Sofern die Steigungen beider Geraden nicht gleich sind, schneiden sich beide Geraden an einem Punkt.

Sofern zwei Geraden nicht parallel verlaufen, also ihre Steigungen unterschiedlich sind, haben zwei Geraden einen Schnittpunkt.

Der Schnittpunkt zweier Geraden bedeutet, dass beide Geraden an diesem Punkt den gleichen x- und y-Wert haben und sich demnach an diesem Punkt überschneiden.

Finales Schnittpunkt zweier Geraden Quiz

Frage

Erkläre das Vorgehen, wenn du den Schnittpunkt zweier Geraden zeichnerisch ermitteln möchtest.

Antwort anzeigen

Antwort

  1. Zunächst zeichnest du beide Funktionen in ein Koordinatensystem ein. Dafür kannst du zum Beispiel eine Wertetabelle anlegen und dann alle Wertepunkte in das Koordinatensystem eintragen.
  2. Danach liest du den Schnittpunkt S beider Gerade im Koordinatensystem ab und gibst ihn an.
Frage anzeigen

Frage

Erkläre das Vorgehen, wenn du den Schnittpunkt zweier Geraden rechnerisch ermitteln möchtest.

Antwort anzeigen

Antwort

  1. Als erstes werden die Funktionsgleichungen gleichgesetzt.
  2. Dann löst man die Gleichung nach x auf. So erhält man den x-Wert des Schnittpunkts.
  3. Den berechneten x-Wert setzt man in eine der beiden Funktionsgleichungen ein und erhält so den y-Wert des Schnittpunkts.
  4. Zum überprüfen sollte man den x-Wert aus Schritt 2 auch in die zweite Funktionsgleichung einsetzen. Hier sollte derselbe y-Wert herauskommen. Alternativ kannst du auch den berechneten Schnittpunkt in die zweite Funktionsgleichung einsetzen und prüfen, ob eine gültige Gleichung herauskommt.
Frage anzeigen

Frage

Welche der folgenden Aussagen ist richtig?

Antwort anzeigen

Antwort

Zwei Geraden schneiden sich immer in einem Punkt. 

Frage anzeigen

Frage

Erkläre, wann zwei Geraden parallel sind.

Antwort anzeigen

Antwort

Zwei Geraden sind parallel, wenn ihre Steigungen gleich sind.

Frage anzeigen

Frage

Erkläre, wann zwei Geraden identisch sind.

Antwort anzeigen

Antwort

Zwei Geraden sind identisch, wenn ihre Steigung und ihr y-Achsenabschnitt übereinstimmen.

Frage anzeigen

Frage

Erkläre, wie du überprüfst, ob zwei Geraden parallel sind.

Antwort anzeigen

Antwort

Methode 1: Du vergleichst die Steigung der Funktionen. Ist sie gleich, dann sind die Geraden parallel.


Methode 2: Du versuchst, einen Schnittpunkt zu berechnen, bekommst aber im Laufe deiner Rechnung eine falsche Aussage (beispielsweise 0=2), und folgerst daraus, dass die Geraden keinen gemeinsamen Punkt haben.

Frage anzeigen

Frage

Erkläre, wie du überprüfst, ob zwei Geraden identisch sind.

Antwort anzeigen

Antwort

Methode 1: Du vergleichst die Steigung und den y-Achsenabschnitt der Funktionen. Sind sie beide gleich, dann sind die Geraden identisch.


Methode 2: Du versuchst, einen Schnittpunkt zu berechnen, bekommst aber im Laufe deiner Rechnung eine wahre Aussage (beispielsweise 2=2), und folgerst daraus, dass die Geraden unendlich viele gemeinsame Punkte haben.

Frage anzeigen

Frage

Gib ein alternatives Wort für rechtwinklig an. 

Antwort anzeigen

Antwort

Zu rechtwinklig kann man auch orthogonal sagen.

Frage anzeigen
Mehr zum Thema Schnittpunkt zweier Geraden
60%

der Nutzer schaffen das Schnittpunkt zweier Geraden Quiz nicht! Kannst du es schaffen?

Quiz starten

Finde passende Lernmaterialien für deine Fächer

Alles was du für deinen Lernerfolg brauchst - in einer App!

Lernplan

Sei rechtzeitig vorbereitet für deine Prüfungen.

Quizzes

Teste dein Wissen mit spielerischen Quizzes.

Karteikarten

Erstelle und finde Karteikarten in Rekordzeit.

Notizen

Erstelle die schönsten Notizen schneller als je zuvor.

Lern-Sets

Hab all deine Lermaterialien an einem Ort.

Dokumente

Lade unzählige Dokumente hoch und habe sie immer dabei.

Lern Statistiken

Kenne deine Schwächen und Stärken.

Wöchentliche

Ziele Setze dir individuelle Ziele und sammle Punkte.

Smart Reminders

Nie wieder prokrastinieren mit unseren Lernerinnerungen.

Trophäen

Sammle Punkte und erreiche neue Levels beim Lernen.

Magic Marker

Lass dir Karteikarten automatisch erstellen.

Smartes Formatieren

Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.

Melde dich an für Notizen & Bearbeitung. 100% for free.