• :00Tage
  • :00Std
  • :00Min
  • 00Sek
Ein neues Zeitalter des Lernens steht bevorKostenlos anmelden
Login Anmelden

Select your language

Suggested languages for you:
StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
|
|

Logarithmus integrieren

Stell Dir vor, Du sitzt in der letzten Stunde im Klassenzimmer. Die Uhr macht Tick Tack Tick Tack. Deine Lehrerin oder Dein Lehrer zeigen Dir das nachfolgende Integral einer Logarithmusfunktion. ∫55elog5(x) dx Wie wird so eine Funktion integriert? Du gibst einen glücklichen Laut von Dir, denn Du bist gerade auf diesen Artikel gestoßen. Das ist genau das, was Du nun für die Lösung…

Von Expert*innen geprüfte Inhalte
Kostenlose StudySmarter App mit über 20 Millionen Studierenden
Mockup Schule

Entdecke über 200 Millionen kostenlose Materialien in unserer App

Logarithmus integrieren

Logarithmus integrieren
Illustration

Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken

Jetzt kostenlos anmelden

Nie wieder prokastinieren mit unseren Lernerinnerungen.

Jetzt kostenlos anmelden
Illustration

Stell Dir vor, Du sitzt in der letzten Stunde im Klassenzimmer. Die Uhr macht Tick Tack Tick Tack. Deine Lehrerin oder Dein Lehrer zeigen Dir das nachfolgende Integral einer Logarithmusfunktion.

55elog5(x) dx

Wie wird so eine Funktion integriert? Du gibst einen glücklichen Laut von Dir, denn Du bist gerade auf diesen Artikel gestoßen. Das ist genau das, was Du nun für die Lösung brauchst!

Doch zunächst kurz einige Grundlagen zur allgemeinen Logarithmusfunktion.

Logarithmus integrieren – Grundwissen

Wie lautet denn die Funktionsgleichung der allgemeinen Logarithmusfunktion?

Eine Funktion f(x) mit

f(x)=logb(x)

wird als allgemeine Logarithmusfunktion bezeichnet, wobei b,x+ und b1 ist.

In der folgenden Abbildung kannst Du Dir zum besseren Verständnis zwei allgemeine Logarithmusfunktionen f(x) und g(x) mit der Basis b1=2, damit b1>1, und eine allgemeine Logarithmusfunktion mit der Basis b2=12, damit b2<1, anschauen.

Logarithmus integrieren Allgemeiner Logarithmus Schaubild StudySmarterAbbildung 1: Schaubild zweier Logarithmusfunktionen

In der Abbildung 1 kannst Du dabei sehen, dass für eine Basis, die größer als 1 ist, der Graph der Logarithmusfunktion steigend verläuft. Im Gegensatz dazu ergibt sich ein fallender Verlauf des Funktionsgraphen für eine Basis kleiner als 1.

Der Artikel Allgemeine Logarithmusfunktion beinhaltet noch einmal alles rund um diesen Funktionstyp und deren Eigenschaften.

Auch von der allgemeinen Logarithmusfunktion lässt sich die Stammfunktion bilden.

Stammfunktion allgemeine Logarithmusfunktion

Die allgemeine Logarithmusfunktion lässt sich sowohl ableiten als auch integrieren.

F(x)Integrierenf(x)=logb(x)Ableitenf'(x)

Integrieren ist das Gegenteil von Ableiten und wird in der Schule teilweise auch Aufleiten genannt.

Doch wie sehen die Integration der Logarithmusfunktion und damit die Stammfunktionen aus? Schau Dir das Ganze einmal mathematisch an.

Die Stammfunktionen der allgemeinen Logarithmusfunktion f(x)=logb(x)lauten:

F(x)=1ln(b)·(x·ln(x)-x)+C

Zur Erinnerung: Im Artikel „Stammfunktion bilden“ hast Du gelernt, dass Du beim Bilden der Stammfunktionen immer eine Konstante C dazu addieren musst, da es unendlich viele Stammfunktionen zu einer Funktion gibt.

Doch wieso gilt diese Formel für die Stammfunktion der allgemeinen Logarithmusfunktion? Wenn Du Dich für die Herleitung der Formel interessierst, dann sieh Dir gerne die nachfolgende Vertiefung an.

Herleitung Stammfunktion der allgemeinen Logarithmusfunktion

Für den Beweis der Stammfunktion benötigst Du die ln-Funktion. Mehr dazu kannst Du in dem Artikel „Integral der ln-Funktion / natürlichen Logarithmusfunktion“ nachlesen.

Damit Du die Stammfunktionen der allgemeinen Logarithmusfunktion bilden kannst, musst Du die allgemeine Logarithmusfunktion in eine ln-Funktion umschreiben.

Zur Erinnerung:

  • Der Basiswechsel eines Logarithmus': logb(x)=loga(x)loga(b)
  • Definition der natürlichen Logarithmusfunktion: loge(x)=ln(x)

Der Logarithmus lässt sich anhand eines Quotienten darstellen, wobei eine beliebige Basis a möglich ist, zum Beispiel e.

Mit dem Basiswechsel und der Definition der natürlichen Logarithmusfunktion, erhältst Du folgende allgemeine Logarithmusfunktion.

logb(x)=loge(x)loge(b)=1ln(b)·ln(x)

Nun handelt es sich um eine ln-Funktion mit einem festen Vorfaktor 1ln(b), da dieser eine konstante Zahl ist.

Zur Erinnerung: Faktorregel beim Integrieren: a·f(x) dx=a·f(x) dx

Zur Berechnung der Stammfunktion der allgemeinen Logarithmusfunktion benötigst Du noch die Stammfunktion der ln-Funktion, die Du im Artikel Integral der ln-Funktion findest.

Zur Erinnerung: Stammfunktion der ln-Funktion: ln(x) dx=x·ln(x)-x+C

Mit Hilfe der Faktorregel beim Integrieren und der Stammfunktion der ln-Funktion kann die Stammfunktion der allgemeinen Logarithmusfunktion wie folgt berechnet werden.

logb(x) dx=1ln(b)·ln(x) dx|Faktorregel=1ln(b)·ln(x) dx|Stammfunktion der ln-FunktionF(x)=1ln(b)·(x·ln(x)-x)+C

Nun kennst Du bereits die Stammfunktion der allgemeinen Logarithmusfunktion. Wende diese Regel gleich einmal an.

Aufgabe 1

Bestimme die Stammfunktionen der Funktion f(x) mit f(x)=log2π(x).

Lass Dich durch das π nicht verwirren. Es kann wie eine ganz normale Zahl behandelt werden.

Lösung

Zuerst musst Du die Basis b identifizieren.

b=2π

Als Nächstes kannst Du alle Zahlen in die obige Formel einfügen und schon hast Du die fertige Stammfunktion.

F(x)=1ln(2π)·(x·ln(x)-x)+C

Vergiss zum Schluss nicht, die Konstante C zu addieren.

Manchmal kann es sein, dass Du die allgemeine Logarithmusfunktion mit verschiedenen Parameter vorliegen hast. Dadurch entsteht die sogenannte erweiterte allgemeine Logarithmusfunktion.

Stammfunktion erweiterte allgemeine Logarithmusfunktion

Die verschiedenen Parameter wirken sich auf die Bildung der Stammfunktion aus. Solltest Du eine Aufgabe mit Parametern vorliegen haben, so kannst Du die folgende Formel anwenden.

Stammfunktionen F(x) der Funktion f(x)=c·logb(ax)+d:

F(x)=cln(b)·(x·ln(ax)-x)+dx+C

Wobei c0 und a0 ist.

Wenn c=1, a=1 und d=0 ist, erhältst Du aus der erweiterten allgemeinen Logarithmusfunktion wieder die allgemeine Logarithmusfunktion f(x)=logb(x).

Um die Formel der Stammfunktionen der erweiterten allgemeinen Logarithmusfunktion zu verinnerlichen, kannst Du diese nun direkt anwenden.

Aufgabe 2

Bestimme die Stammfunktionen der Funktion f(x) mit f(x)=3·log14(15x)+9.

Lösung

Zuerst musst Du die Basis b identifizieren.

b=14

Als Nächstes kannst Du die Parameter c, a und d identifizieren.

c=3a=15d=9

Als Letztes kannst Du alle Zahlen in die obige Formel einfügen und damit hast Du die fertige Stammfunktion.

F(x)=3ln(14)·(x·ln(15x)-x)+9x+C

Wozu wird die Stammfunktion der allgemeinen Logarithmusfunktion überhaupt verwendet? Sieh Dir dazu die nachfolgende Anwendung an.

Logarithmus integrieren – Beispiele & Anwendung

Die StammfunktionF(x) der allgemeinen Logarithmusfunktionf(x)=logb(x) brauchst Du beispielsweise für das Lösen eines Integrals. Dabei kannst Du die Stammfunktion beim Integral mit den Grenzen u und o wie folgt anwenden.

Bestimmtes Integral der allgemeinen Logarithmusfunktion mit den Grenzen u und o:

uologb(x)dx=1ln(b)·(x·ln(x)-x)uo

Der Hauptsatz der Differential- und Integralrechnung wird dazu benutzt, um ein bestimmtes Integral zu lösen. Mehr dazu kannst Du im Kapitel bestimmtes Integral nachlesen.

Nun kannst Du überprüfen, ob Du das Integral der allgemeinen Logarithmusfunktion bereits verstanden hast.

Aufgabe 3

Berechne exakt das Integral 1eloge(x)dx.

Die Funktion f(x)=loge(x) entspricht der Funktion f(x)=loge(x)=ln(x). Da Du an dieser Stelle die allgemeine Logarithmusfunktion betrachtest, wird die Funktion f(x) nicht in den natürlichen Logarithmus umgewandelt.

Lösung

Zuerst ist es wieder hilfreich, die Basis b zu identifizieren.

b=e

Damit erhältst Du folgendes Integral, indem Du eine Stammfunktion bildest und die Grenzen jeweils für x einsetzt.

1eloge(x) dx=1ln(e)·(x·ln(x)-x)1e=11·(x·ln(x)-x)1e=e·ln(e)-e-(1·ln(1)-1)=e·1-e-(1·0-1)=e-e-0+1=1 FE

Zum besseren Verständnis kannst Du Dir noch das Schaubild der Funktion f(x)=loge(x) und das berechnete Integral anschauen.

Logarithmus integrieren Schaubild einer Logarithmusfunktion mit Basis b=e StudySmarterAbbildung 2: Schaubild zur Aufgabe 3

Nun ist es an der Zeit, Dein Wissen über das Integral der allgemeinen Logarithmusfunktion zu verinnerlichen.

Allgemeine Logarithmusfunktion integrieren – Aufgaben mit Lösung

Bilde als erste Übung doch noch einmal eine Stammfunktionen einer allgemeinen Logarithmusfunktion.

Aufgabe 4

Bilde die Stammfunktion der Funktion f(x) mit f(x)=log3(-2x)+e.

Lass Dich auch durch das e nicht verwirren, das kannst Du wie eine normale Konstante betrachten.

Lösung

Identifiziere zuerst die Basis b und die Parameter c, a und d.

b=3c=1a=-2d=e

Setzt Du diese Werte nun in die Formel ein, erhältst Du folgende Stammfunktion für die Funktion f(x)=log3(-2x)+e.

F(x)=1ln(3)·(x·ln(-2x)-x)+ex+C

Du sitzt immer noch an Deiner Aufgabe im Klassenzimmer. Doch Du weißt nun, was Du machen musst, und löst die Aufgabe, die vor Dir liegt!

Aufgabe 5

Löse das folgende Integral.

55elog5(x) dx

Lösung

Zuerst musst Du die Basis b identifizieren.

b=5

Damit erhältst Du folgendes Integral.

55elog5(x)dx=1ln(5)·(x·ln(x)-x)55e=1ln(5)·(5e·ln(5e)-5e-(5·ln(5)-5))=1ln(5)·(5e·(ln(5)+ln(e))-5e-5·ln(5)+5)=1ln(5)·(5e·ln(5)+5e-5e-5·ln(5)+5)=1ln(5)·(5e·ln(5)-5·ln(5)+5)=5e·ln(5)ln(5)-5·ln(5)ln(5)+5ln(5)=5e-5+5ln(5)11,7 FE

Um die Funktion f(x)=log5(x) und das berechnete Integral zu veranschaulichen, schau Dir die nachfolgende Abbildung 3 an.

Logarithmus integrieren Schaubild einer Logarithmusfunktion mit Basis b=5 StudySmarterAbbildung 3: Schaubild zur Eingangsaufgabe

Geschafft! Du kannst nun Integrale von Logarithmusfunktionen lösen. Für die Zukunft weißt Du nun auch, wo Du nachschauen musst, wenn Du Hilfe beim Integral der allgemeinen Logarithmusfunktion brauchst.

Logarithmus integrieren – Das Wichtigste

  • Die allgemeine Logarithmusfunktion lautet: f(x)=logb(x)
  • Die Stammfunktion der allgemeinen Logarithmusfunktion lautet: F(x)=1ln(b)·(x·ln(x)-x)+C
  • Die Stammfunktion der Funktionf(x)=c·logb(ax)+d lautet: F(x)=cln(b)·(x·ln(ax)-x)+dx+C
  • Das Integrieren der allgemeinen Logarithmusfunktion benötigst Du, um bestimmte Integrale zu lösen.
  • Für das Integral mit den Grenzen u und o gilt folgende Gleichung: uologb(x)dx=1ln(b)·(x·ln(x)-x)uo

Nachweise

  1. Papula (2018). Mathematik für Ingenieure und Naturwissenschaftler Band 1. Springer Vieweg.

Häufig gestellte Fragen zum Thema Logarithmus integrieren

Die allgemeine Logarithmusfunktion f(x)=logb(x) wird integriert, indem die Stammfunktionen dieser gebildet werden. Die Stammfunktionen dieser Funktion lauten: 

F(x) = 1/ln(b) ⋅ (x ⋅ ln(x) - x) + C.

Finales Logarithmus integrieren Quiz

Logarithmus integrieren Quiz - Teste dein Wissen

Frage

Wozu wird das Integrieren der allgemeinen Logarithmusfunktion benötigt?

Antwort anzeigen

Antwort

Das Integrieren der allgemeinen Logarithmusfunktion wird benötigt, um bestimmte Integrale zu lösen und damit beispielsweise die eingeschlossene Fläche des Graphen mit der x-Achse in einem bestimmten Intervall zu berechnen.

Frage anzeigen

Mehr zum Thema Logarithmus integrieren
60%

der Nutzer schaffen das Logarithmus integrieren Quiz nicht! Kannst du es schaffen?

Quiz starten

Wie möchtest du den Inhalt lernen?

Karteikarten erstellen
Inhalte meiner Freund:innen lernen
Ein Quiz machen

94% der StudySmarter Nutzer erzielen bessere Noten.

Jetzt anmelden

94% der StudySmarter Nutzer erzielen bessere Noten.

Jetzt anmelden

Wie möchtest du den Inhalt lernen?

Karteikarten erstellen
Inhalte meiner Freund:innen lernen
Ein Quiz machen

Kostenloser mathe Spickzettel

Alles was du zu . wissen musst. Perfekt zusammengefasst, sodass du es dir leicht merken kannst!

Jetzt anmelden

Finde passende Lernmaterialien für deine Fächer

Alles was du für deinen Lernerfolg brauchst - in einer App!

Lernplan

Sei rechtzeitig vorbereitet für deine Prüfungen.

Quizzes

Teste dein Wissen mit spielerischen Quizzes.

Karteikarten

Erstelle und finde Karteikarten in Rekordzeit.

Notizen

Erstelle die schönsten Notizen schneller als je zuvor.

Lern-Sets

Hab all deine Lermaterialien an einem Ort.

Dokumente

Lade unzählige Dokumente hoch und habe sie immer dabei.

Lern Statistiken

Kenne deine Schwächen und Stärken.

Wöchentliche

Ziele Setze dir individuelle Ziele und sammle Punkte.

Smart Reminders

Nie wieder prokrastinieren mit unseren Lernerinnerungen.

Trophäen

Sammle Punkte und erreiche neue Levels beim Lernen.

Magic Marker

Lass dir Karteikarten automatisch erstellen.

Smartes Formatieren

Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.

Melde dich an für Notizen & Bearbeitung. 100% for free.

Fang an mit StudySmarter zu lernen, die einzige Lernapp, die du brauchst.

Jetzt kostenlos anmelden
Illustration