Select your language

Suggested languages for you:
Log In Anmelden
StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
|
|

Die All-in-one Lernapp:

  • Karteikarten
  • NotizenNotes
  • ErklärungenExplanations
  • Lernpläne
  • Übungen
App nutzen

Variation

Save Speichern
Print Drucken
Edit Bearbeiten
Melde dich an und nutze alle Funktionen. Jetzt anmelden
Variation

Vielleicht hast Du selbst ein Smartphone oder einen Laptop zu Hause. Dazu sollst Du oftmals eine PIN eingeben, falls Du kein Passwort verwenden kannst oder möchtest. So kann eine PIN zum Beispiel aus vier Stellen bestehen. Selbstverständlich spielt hierbei die Reihenfolge eine Rolle. Was hat das allerdings mit der Planung eines Wochenendes zu tun, bei der Du gerne von Freitag bis Sonntag unterschiedliche Dinge mit Deinen Freunden unternehmen möchtest?

Variationen Wochenende als Beispiel für Variationen StudySmarter

Diese Themen passen beide in die Variation aus der Mathematik. Die Variation ist ein Konzept aus der Mathematik, um Wahrscheinlichkeiten für eine bestimmte Bedingung zu berechnen.

Variation Kombinatorik - Wiederholung

Wie Du bereits in der Einleitung erfahren hast, gibt es verschiedene Möglichkeiten, wie eine Variation aufgebaut sein kann. Es kann unter anderem die Reihenfolge oder auch die Wiederholung eine Rolle spielen.

Permutation Variation Kombination - Abzählmethoden

Dabei ist die Variation nicht das einzige Konzept aus der Kombinatorik. Für die Kombinatorik gibt es grundlegend drei Konzepte. Nämlich die Permutation, die Variation und die Kombination. Für alle ist entscheidend:

  • ob die Reihenfolge beachtet werden soll
  • und ob sich Elemente wiederholen dürfen.

Es kann bei manchen Aufgabenstellungen helfen, mit einem sogenannten Entscheidungsbaum herauszufinden, welche Art von Abzählmethode vorliegt. Die nachfolgende Grafik soll Dir die Konzepte verdeutlichen.

Werden also aus einer Menge alle Objekte ausgewählt, so handelt es sich um eine Permutation. Da alle Objekte verwendet werden, gilt:

Du möchtest eine Anordnung von Studenten beschreiben, die durch eine Tür gehen. Da alle Schüler durch die Tür spazieren sollen, gilt, dass n gleich k ist. Dementsprechend handelt es sich um eine Permutation.

Für den Fall, dass die nachfolgende Bedingung gilt, kannst Du zwischen einer Kombination oder Variation unterscheiden:

Eine Kombination trifft zu, falls die Reihenfolge nicht entscheidend ist. Bei einer Variation spielt die Reihenfolge allerdings eine Rolle. Wie für jedes der drei Konzepte der Permutation, Kombination und Variation kannst Du unterscheiden, ob eine Wiederholung stattfindet oder nicht.

Bei einer Geburtstagsparty können 10 von 20 Gäste einen Käsekuchen essen, da diese Stücke noch übrig sind. Dabei spielt die Reihenfolge der 10 Personen keine Rolle, da sie alle denselben Kuchen bekommen. Aber eine Wiederholung soll eher nicht stattfinden, ansonsten könnte eine Person alle 10 Kuchen essen.

Auch für die Variation gibt es die Möglichkeit, mit oder ohne Wiederholung zu unterscheiden. Dabei ist das Beispiel einer PIN bekannt dafür, dass die Reihenfolge entscheidend ist und Zahlen wiederholt werden können, da...

  • die Zahlenfolgen 1,2,3,4 und 4,3,2,1 nicht identisch sind
  • und die Zahlenfolge 1,1,1,1 erlaubt ist, obwohl sie leicht zu knacken ist.

Permutation Variation Kombination - Zusammenfassung

Als kurze Zusammenfassung hier nochmal eine Übersicht der Modelle Permutation, Kombination und Variation.

AnwendungFormel
Variation mit WiederholungWähle k Elemente aus n mit Reihenfolge mit Zurücklegen (k < n)
Variation ohne WiederholungWähle k Elemente aus n mit Reihenfolge ohne Zurücklegen(k < n)
Kombination mit WiederholungWähle k Elemente aus n ohne Reihenfolge mit Zurücklegen(k < n)
Kombination ohne WiederholungWähle k Elemente aus n ohne Reihenfolge ohne Zurücklegen(k < n)
Permutation mit WiederholungWähle k Elemente aus n ohne Reihenfolge mit Zurücklegen (n = k)
Permutation ohne WiederholungWähle k Elemente aus n ohne Reihenfolge ohne Zurücklegen(k = n)

Vergewissere Dich am besten also immer, welche Art von Modell Deinen Vorgang passend beschreibt.

Wenn Du gerne mehr interessante Inhalte zu den Modellen Permutation und Kombination sehen möchtest, dann kannst Du gerne auf den folgenden Seiten vorbeisehen:

Näheres zu den einzelnen konkreten Anwendungen findest Du unter anderem in diesen zwei von sechs Erklärungen

Variationen Variationen mit Kugeln StudySmarter

Variation Definition und Bedeutung

Wie bereits erwähnt, ist die Variation eines der drei Konzepte aus der Kombinatorik, wobei sie sich in zwei Teile aufteilt.

Eine Variation ist ein Modell der Kombinatorik, eine sogenannte Abzählmethode. Dabei handelt es sich um eine Auswahl von k Elementen, bzw. ein Teil einer Grundmenge von n Elementen, bei der die Reihenfolge eine Rolle spielt.

Da es sich nur um einen Teil der n möglichen Ergebnisse dreht, werden Variationen auch „geordnete Stichproben“ genannt. Eine Stichprobe ist eine Teilmenge von Elementen, die der Grundgesamtheit aller möglichen Elemente zufällig entnommen wird.

Es gilt dabei zwei Fälle der Variation zu unterscheiden. Es kommt vor, dass Elemente wieder zurückgelegt werden und die Ausgangsmenge sich bei weiteren Durchgängen nicht verändert. Allerdings gibt es auch den Fall, dass Elemente nicht mehr zurückgelegt werden. Dazu mehr in den folgenden Abschnitten.

Variation berechnen - 2 Fälle

Wie Du schon oben in der Übersicht sehen kannst, gibt es zwei Formen der Variation. Dabei wird unterschieden, ob eine Wiederholung stattfindet oder nicht. Gemeint ist damit, ob es Elemente gibt, die mehrfach verwendet werden dürfen.

Variation mit Wiederholung

Die Variation mit Wiederholung ist eine der zwei Konzepte der Variationen und wird für Wiederholungen verwendet.

Bei der Variation mit Wiederholung werden k Elemente - mit Beachten der Reihenfolge - aus einer Menge von n Elementen ausgewählt. Die Elemente dürfen dabei wieder verwendet werden.

Du verwendest für dieses Beispiel die Formel:

Variationen Variation mit Wiederholung Formel StudySmarter

Dazu soll Dir das nachfolgende Beispiel, diesen Fall näher erläutern.

Aus einer Urne mit sieben Kugeln - diese sind von 1 bis 7 sortiert - werden 4 gezogen.

Nach jedem Ziehen wird die gezogene Kugel notiert und in die Urne zurückgelegt.

So stehen nach jedem Zug wieder 7 Kugeln zur Auswahl.

Es liegt demnach eine Variation mit Wiederholung vor!

Anhand des Beispiels kannst Du Dir jetzt ansehen, wie Du die Anzahl möglicher Anordnungen der Kugeln mithilfe der genannten Formel berechnest.

Da Du die erste Kugel nach dem Ziehen notierst und wieder in die Urne zurückgelegt hast, handelt es sich um eine Variation mit Wiederholung, da diese Kugel wiederholt verwendet werden darf. Die Ausgangsmenge der Kugeln hat sich also nicht verändert und ist im zweiten Durchgang wieder die gleiche. Du kannst also das identische Element k aus der Menge n erneut ziehen.

Dabei entspricht n der Gesamtzahl Deiner Objekte und k, wie viele Objekte gezogen werden.

Betrachte hierbei das Beispiel mit den 7 Kugeln. Wie viele Kombinationsmöglichkeiten gibt es für die Nummern der Kugeln?

Dafür werden also 4 dieser Kugeln gezogen. k entspricht also der Zahl 4, n ist die Zahl 7, damit ergibt es:

Es gibt also 2401 Möglichkeiten, die Kugeln mit Beachtung der Reihenfolge mit Zurücklegen anzuordnen.

Dürfen Elemente nicht mehrfach verwendet werden, handelt es sich stattdessen um eine Variation ohne Wiederholung.

Variation ohne Wiederholung

Interessiert Dich wie bei einem Rennen die Reihenfolge der Platzierten, allerdings können Teilnehmer nicht mehr Plätze belegen, so handelt es sich um eine Variation ohne Wiederholung.

Bei einer Variation ohne Wiederholung ist wie bei der Variation mit Wiederholung die Reihenfolge entscheidend. Dieses Mal können allerdings Objekte nicht mehr wiederholt verwendet werden.

Für jeden weiteren Zug kannst Du eine Kugel weniger auswählen. Anfangs konntest Du aus n Kugeln wählen, nun werden es immer eins weniger.

Variationen Variation ohne Wiederholung Formel StudySmarter

Auch dazu kannst Du Dir ein Beispiel anhand der gleichen Ausgangssituation ansehen. Allerdings werden die Kugeln dieses Mal nicht wieder zurückgelegt, sondern an der Seite platziert.

Aus einer Urne mit 7 Kugeln - beschriftet mit Zahlen von 1 bis 7 - werden nacheinander 4 Kugeln gezogen.

Nach jedem Ziehen wird die gezogene Kugel notiert und nicht in die Urne zurückgelegt.

Es befindet sich nach jedem Zug eine Kugel weniger zur Auswahl in der Urne.

Somit liegt eine Variation ohne Wiederholung vor!

Bei einer Variation ohne Wiederholung kann also jedes der k Elemente nur einmal ausgewählt werden.

Wie bei der Variation mit Wiederholung wird auch hier nur eine Auswahl k von n Objekten verwendet, die Du in die Formel einsetzen kannst.

Für Dein Wochenende stehen 10 Aktivitäten zur Auswahl. Da Du nicht so viel Zeit hast, möchtest Du mit Deinem Freund/Deiner Freundin 3 Aktivitäten planen. Euch ist dabei schon wichtig, ob ihr zuerst ins Kino und danach Schwimmen oder umgekehrt geht. Außerdem wollt ihr eine Aktivität nicht mehrfach erleben.

Dabei handelt es sich um die Variation ohne Wiederholung, da

  • die Reihenfolge wichtig ist und
  • ihr wollt Aktivitäten nicht mehrfach machen, somit findet keine Wiederholung statt.

Du setzt in die Formel für die Variation ohne Wiederholung n = 10 und k = 3 ein.

Du siehst dabei, dass Du den folgenden Bruch mit der Fakultät (das Ausrufezeichen) kürzen kannst. Dazu streichst Du alle Zahlen weg, die sich im Zähler und Nenner befinden.

Wie Du genau für die Berechnung vorgehen kannst und wenn Du das Konzept mit dem Streichen der Zahlen gerne besser nachvollziehen möchtest, kannst Du Dir gerne die Erklärung Variation ohne Wiederholung ansehen.

Es gibt also insgesamt 720 Möglichkeiten, wie Eure 3 der 10 Aktivitäten geordnet werden können.

Variation - Beispiel mit Aufgaben

Nun kannst Du beispielhaft die beiden Konzepte der Variation mit und ohne Wiederholung noch praktisch bearbeiten.

Aufgabe 1

Auf Deinem Smartphone vergibst Du eine PIN mit insgesamt 6 Stellen.

a) Erkläre, dass es sich um die Variation mit Wiederholung handelt.

b) Berechne diese.

(Tipp: Jede Stelle kann die Zahlen 0-9 enthalten.)

Lösung

a) Es handelt sich um die Variation mit Wiederholung, da die Reihenfolge eine Rolle spielt, ansonsten würden zum Beispiel die Kombinationen 1,2,3,4,5,6 und 6,5,4,3,2,1 beide funktionieren. Außerdem Dürfen Zahlen auch mehrfach verwendet werden, weshalb eine Wiederholung stattfindet.

b) Du kannst also für jede der sechs Stellen die Zahlen 0 bis 9 wählen, das sind 10 Zahlen. Für jede Stelle stehen Dir also n = 10 Zahlen zur Verfügung.

Für diese PIN gibt es also 1 Mio. Kombinationsmöglichkeiten.

Aufgabe 2

Nur 3 Personen der insgesamt 100 Marathonläufer können einen Preis gewinnen.

a) Erkläre, warum hierbei die Variation ohne Wiederholung gewählt wird.

b) Berechne diese auch für diesen Fall.

Lösung

a) Auch in diesem Fall spielt die Reihenfolge eine Rolle, da der 3. Platz zum Beispiel besser ist als der 97. Allerdings kann es keine Wiederholung geben, ansonsten würde eine Person mehrere Plätze belegen können.

b) Dafür verwendest Du die bekannte Formel und setzt für n die Zahl 100 ein. Außerdem entspricht k der Zahl 3.

Variationen - Das Wichtigste

  • Die Permutation trifft zu, falls alle Objekte aus der Grundmenge verwendet werden. Für eine "Stichprobe" werden die Variation und Kombination unterschieden. Für alle drei Konzepte gibt es die Unterscheidung ob mit oder ohne Wiederholung.
  • Die Kombination wählst Du dafür, falls die Reihenfolge keine Rolle spielt, bei einer Variation ist sie entscheidend.
  • Die Variation mit Wiederholung lässt sich über die Formel nk berechnen. Dabei können pro weiteren Schritt immer alle Objekte gewählt werden.
  • Die Variation ohne Wiederholung berechnet sich über die Formel .

Häufig gestellte Fragen zum Thema Variation

Eine Variation ist ein Modell der Kombinatorik, eine so genannte Abzählmethode. Dabei handelt es sich um eine Auswahl von k Elementen, bzw. einen Teil einer Grundmenge von n Elementen, bei der die Reihenfolge eine Rolle spielt.  

Eine Permutation verwendest Du, wenn alle Objekte einer Grundmenge verteilt werden sollen. Falls es sich um eine Stichprobe handelt, wird unterschieden, ob die Reihenfolge entscheidend ist oder nicht. Ist sie wichtig, so handelt es sich um eine Variation, ansonsten ist es eine Kombination. Alle drei Konzepte unterscheiden dann auch noch, ob es eine Wiederholung gibt oder nicht.

Für die Variation mit Wiederholung nimmst Du die Grundmenge n k-mal mit sich selbst, da Du für jeden Schritt jeweils alle Objekte wählen kannst. Für die Variation ohne Wiederholung kannst Du für jeden folgenden Schritt immer ein Objekt weniger wählen.

Es gibt die Variation mit Wiederholung und ohne Wiederholung. Wie der Name bereits andeutet, dürfen bei der Variation mit Wiederholung Objekte auch wiederholt auftreten, bzw. Kugeln wieder in eine Urne zurückgelegt werden. Für deine Variation ohne Wiederholung ist das nicht möglich.

Finales Variation Quiz

Frage

Welche Bedingung gilt für die Menge an Objekten n und den ausgewählten k für eine Permutation?

Antwort anzeigen

Antwort


Frage anzeigen

Frage

Was gilt für eine Kombination?

Antwort anzeigen

Antwort

Die Reihenfolge ist nicht wichtig.

Frage anzeigen

Frage

Welches Konzept aus der Kombinatorik gilt für ein Sprintrennen?

Antwort anzeigen

Antwort

Variation ohne Wiederholung

Frage anzeigen

Frage

Worum handelt es sich bei einer PIN?

Antwort anzeigen

Antwort

Variation mit Wiederholung

Frage anzeigen

Frage

Was gilt für eine Anordnung von Schülern auf Sitzplätze?

Antwort anzeigen

Antwort

Permutation ohne Wiederholung

Frage anzeigen

Frage

Welche Formel gilt für die Variation ohne Wiederholung?

Antwort anzeigen

Antwort


Frage anzeigen

Frage

Welche Formel gilt für die Variation mit Wiederholung?

Antwort anzeigen

Antwort

nk

Frage anzeigen

Frage

Erkläre den Begriff der Variation mit Wiederholung.

Antwort anzeigen

Antwort

Bei der Variation mit Wiederholung handelt es sich um eine Stichprobe, wobei die Reihenfolge eine Rolle spielt und auch eine Wiederholung stattfindet, also sozusagen Kugeln in eine Urne zurückgelegt werden können.

Frage anzeigen

Frage

Was ist der Unterschied zwischen den beiden Arten der Variationen?

Antwort anzeigen

Antwort

Mit/ohne Wiederholung

Frage anzeigen

Frage

Warum gilt die Formel nfür die Variation mit Wiederholung?

Antwort anzeigen

Antwort

Für jeden Zug kannst Du immer n Objekte wählen, da immer alle Objekte zurückgelegt werden. Das kannst Du für k Schritte k mal durchführen. Diese Multiplikation kannst Du auch als Potenz schreiben.

Frage anzeigen

Frage

Du wählst 4 Objekte aus 10 mit Variation mit Wiederholung. Wie viele Kombinationen gibt es?

Antwort anzeigen

Antwort

10 000 Möglichkeiten

Frage anzeigen

Frage

Eine PIN besteht aus 8 Stellen. Wie viele Kombinationsmöglichkeiten gibt es?

Antwort anzeigen

Antwort

100 000 000

Frage anzeigen

Frage

Du wählst 5 von 15 Objekten aus, mit Beachtung der Reihenfolge ohne Wiederholung. Wie viele Kombinationen gibt es?

Antwort anzeigen

Antwort

360 360

Frage anzeigen

Frage

Eine Gruppe von Kindern möchte gerne 4 von 12 Aktivitäten planen, allerdings möchten sie eine Aktivität nicht zweimal durchführen und die Reihenfolge ist für sie entscheidend. Wie viele Kombinationsmöglichkeiten gibt es?

Antwort anzeigen

Antwort

Es gibt 11 880 Möglichkeiten.

Frage anzeigen

Frage

Bei einem Wahlwettbewerb kann es nur drei Sieger bzw. Siegerinnen geben. Worum handelt es sich?

Antwort anzeigen

Antwort

Variation ohne Wiederholung

Frage anzeigen
60%

der Nutzer schaffen das Variation Quiz nicht! Kannst du es schaffen?

Quiz starten

Finde passende Lernmaterialien für deine Fächer

Alles was du für deinen Lernerfolg brauchst - in einer App!

Lernplan

Sei rechtzeitig vorbereitet für deine Prüfungen.

Quizzes

Teste dein Wissen mit spielerischen Quizzes.

Karteikarten

Erstelle und finde Karteikarten in Rekordzeit.

Notizen

Erstelle die schönsten Notizen schneller als je zuvor.

Lern-Sets

Hab all deine Lermaterialien an einem Ort.

Dokumente

Lade unzählige Dokumente hoch und habe sie immer dabei.

Lern Statistiken

Kenne deine Schwächen und Stärken.

Wöchentliche

Ziele Setze dir individuelle Ziele und sammle Punkte.

Smart Reminders

Nie wieder prokrastinieren mit unseren Lernerinnerungen.

Trophäen

Sammle Punkte und erreiche neue Levels beim Lernen.

Magic Marker

Lass dir Karteikarten automatisch erstellen.

Smartes Formatieren

Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.

Gerade angemeldet?

Ja
Nein, aber ich werde es gleich tun

Melde dich an für Notizen & Bearbeitung. 100% for free.