StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
Americas
Europe
Die Neusynthese von Proteinen in Organismen wird als Proteinbiosynthese bezeichnet. Proteine gehören neben Fetten und Kohlenhydraten zu den Grundbausteinen von Zellen in allen Lebewesen. Neben strukturellen Funktionen übernehmen verschiedene Proteine eine Vielzahl unterschiedlicher Aufgaben in unserem Körper.Als Basiswissen für diesen Artikel ist es wichtig, die grundlegende Struktur und der Aufbau der DNA zu kennen. Falls dir die DNA noch kein…
Entdecke über 200 Millionen kostenlose Materialien in unserer App
Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmeldenDie Neusynthese von Proteinen in Organismen wird als Proteinbiosynthese bezeichnet. Proteine gehören neben Fetten und Kohlenhydraten zu den Grundbausteinen von Zellen in allen Lebewesen. Neben strukturellen Funktionen übernehmen verschiedene Proteine eine Vielzahl unterschiedlicher Aufgaben in unserem Körper.
Als Basiswissen für diesen Artikel ist es wichtig, die grundlegende Struktur und der Aufbau der DNA zu kennen. Falls dir die DNA noch kein Begriff ist, kannst du das entsprechende Wissen in unserem StudySmarter Artikel zu diesem Thema auffrischen.
Die Proteinbiosynthese ist die Neusynthese von Proteinen in unseren Zellen. Aber worum handelt es sich bei den Proteinen überhaupt? Und warum spielen sie eine so essenzielle Rolle in unseren Körpern und Zellen?
Proteine (auch Eiweiße) sind biologische Makromoleküle, welche aus sogenannten Aminosäuren aufgebaut sind. Die entsprechenden Aminosäuren sind über spezifische Peptidbindungen miteinander verknüpft. Aminosäureketten werden auch Polypeptide genannt. Ein Protein kann aus einem oder mehreren Polypeptiden bestehen.
Tiefere Einblicke in die Struktur und Funktionen von Proteinen erhältst du in den StudySmarter Artikeln zur Proteinstruktur und zu den biologischen Funktionen von Proteinen. Schau mal vorbei!
Proteine übernehmen wichtige strukturelle Funktionen im Zellaufbau, sowie eine Vielzahl an unterschiedlichen Aufgaben in unseren Zellen. Proteine sind als sogenannte Biokatalysatoren an einem Großteil der in unseren Körper ablaufenden Stoffwechselvorgänge beteiligt. Proteine, welche also Biokatalysatoren fungieren, werden Enzyme genannt.
Biokatalysatoren sind Moleküle, welche biochemische Reaktionen beschleunigen oder verlangsamen, indem sie die Energiemenge verringern oder erhöhen, die zum Ablaufen einer Reaktion benötigt wird (Aktivierungsenergie). Einige biochemische Reaktionen benötigen Biokatalysatoren, damit sie ablaufen können.
Unsere Zellen synthetisieren Proteine nach einem bestimmten Bauplan, welcher in unserem Genom (DNA) enthalten ist. Die Proteinbiosynthese kann in zwei Teilschritte aufgeteilt werden.
Die Proteinbiosynthese ist die Neusynthese von Proteinen in lebenden Zellen. Es handelt sich um ein für alle Lebewesen zentralen und essenziellen intrazellulären Prozess. Bei der Proteinbiosynthese werden nach Vorgabe von genetischer Information (DNA) neue Proteine aus Aminosäuren aufgebaut.
In einem ersten Schritt wird die Information für das entsprechende Protein im Zellkern ausgelesen und in eine sogenannte messenger-RNA (mRNA) umgeschrieben. Dieser Teilschritt wird Transkription genannt.
Im zweiten Schritt der Proteinbiosynthese wird die mRNA in ein entsprechendes Polypeptid (Protein) übersetzt. Dieser Teilschritt wird Translation genannt. Jedes Gen wird beim Prozess der Proteinbiosynthese in ein Polypeptid übersetzt. Man spricht von der sogenannten "Ein-Gen-ein-Polypeptid-Hypothese".
Prokaryoten (Bakterien und Archaeen) besitzen keinen Zellkern. Bei Prokaryoten findet die gesamte Proteinbiosynthese im Cytoplasma der Zellen statt. In Eukaryoten dagegen sind die einzelnen Teilschritte der Proteinbiosynthese räumlich voneinander getrennt.
Der Ablauf der Proteinbiosynthese ist in Teilabschnitte gegliedert:
Die Transkription ist die Umschreibung eines Gens in eine mRNA. Ein Gen enthält die Information für den Bau eines Polypeptides.
Transkription ist die Synthese von RNA, wobei die DNA als Vorlage dient und die Basensequenz der DNA in die Basensequenz der RNA umgeschrieben wird.
Damit ein Gen abgelesen und umgeschrieben werden kann, muss die spiralförmige DNA für die Transkription an dem entsprechenden Abschnitt entspiralisiert und in zwei Einzelstränge aufgetrennt werden.
Durch einen entsprechenden Proteinkomplex wird dann der sogenannte codogene Einzelstrang des Gens abgelesen und in eine mRNA umgeschrieben. Das entscheidende Enzym für den Aufbau des mRNA-Einzelstranges (Transkript) ist die sogenannte RNA-Polymerase.
Der codogene Strang ist der Einzelstrang des proteincodierenden Gens, welcher von der RNA-Polymerase als Vorlage zur Bildung der mRNA genutzt wird.
Bei der Transkription entsteht ein zum codogenen Strang komplementärer RNA Strang. Während DNA aus den Basenpaarungen Adenin-Thymin (A-T) und Guanin-Cytosin (G-C) aufgebaut ist, bestehen RNA-Moleküle aus den Basenpaarungen Adenin-Uracil (A-U) und Guanin-Cytosin (G-C). Entsprechende Thymin Basen sind in der RNA also durch Uracil Basen vertauscht.
Der codierende Strang ist der DNA-Strang des Gens, welcher nicht von der RNA-Polymerase genutzt wird. Er entspricht der Basenfolge des entstehenden mRNA-Einzelstrangs (Transkript).
Nachdem das Gen in ein mRNA-Transkript umgeschrieben wurde, müssen bestimmte Prozesse stattfinden, damit die entsprechende mRNA als Transportmolekül fungieren kann. Bei diesen Prozessen spricht man von der sogenannten RNA-Prozessierung oder auch vom Reifungsprozess der mRNA. Die RNA-Prozessierung sorgt dafür, dass die richtigen Abschnitte der mRNA in ein Polypeptid übersetzt werden und schützt die mRNA vor dem enzymatischen Abbau.
Die RNA-Prozessierung ist ein Prozess in eukaryotischen Zellen. Aufgrund der Genstruktur ist bei Prokaryoten kein Reifungsprozess der mRNA notwendig.
Tiefere Einblicke zum Ablauf der Transkription und zu den wichtigsten beteiligten Enzymen erhältst du in einem gesonderten StudySmarter Artikel.
Die Translation ist der zweite Teilschritt der Proteinbiosynthese.
Translation ist die Synthese von Proteinen, wobei die Basensequenz der mRNA in eine Aminosäuresequenz eines Proteins übersetzt wird.
Die Translation findet an den sogenannten Ribosomen statt. Ribosomen bestehen aus einer großen und einer kleinen Untereinheit. Die mRNAs lagern sich an einem Ribosom an und werden mithilfe von sogenannten transfer RNAs (tRNAs) in Polypeptide übersetzt.
Ribosome bestehen aus Proteinen und ribosomaler RNA (rRNA). Die kleine Untereinheit erkennt und bindet die entsprechende mRNA. Die große Untereinheit hat drei Bindungsstellen für tRNAs und ist für die Bildung der Polypeptidkette verantwortlich.
Die drei tRNA Bindungsstellen des Ribosoms werden A-(Aminoacyl-), P- (Peptidyl) und E-(Exit) Bindungsstelle genannt. Jede Bindungsstelle hat Platz für ein tRNA Molekül. Die Bindungsstellen werden gleich wichtig, wenn es um den Ablauf der Translation geht.
Transfer RNAs (tRNAs) sind wie mRNAs Nukleinsäuren und bestehen aus einer Basensequenz. Aufgrund von Wechselwirkungen zwischen den Basen haben tRNAs eine sogenannte Kleeblattstruktur. Auf einer Seite besitzen tRNAs eine Bindestelle für eine spezifische Aminosäure. Auf der anderen Seite liegt eine Erkennungssequenz für die mRNA.
Die Erkennungssequenz für die mRNA besteht aus drei Basen und wird Anticodon genannt. Die tRNAs transportieren spezifische Aminosäuren, passend zu ihren Anticodons. Die tRNAs können also an entsprechenden mRNA-Abschnitten binden, die komplementär zu ihrer Erkennungssequenz (Anticodon) sind.
Ein Anticodon ist eine Dreiergruppe von Basen (Nukleotiden) auf der tRNA, die zu einem Codon auf der mRNA komplementär sind.
Somit entsprechen drei Basen auf der mRNA immer einer Aminosäure. Nach diesem Schema kann die mRNA in ein Polypeptid übersetzt werden. Dieses Prinzip der Übersetzung wird als Genetischer Code bezeichnet.
Menschliche Proteine bestehen aus 21 verschiedenen Aminosäuren. Bestimmte Codons des genetischen Codes entsprechen spezifischen Aminosäuren. Sogenannte Basentripletts oder Codons (Basensequenz bestehend aus 3 Basen) entsprechen dabei den verschiedenen Aminosäuren. Neben Tripletts, welche Aminosäuren codieren, gibt es sogenannte Start- und Stopp-Codons.
Ein Codon ist eine Dreierfolge (Triplett) auf der mRNA, die die Position einer Aminosäure in einem Protein bestimmt, beziehungsweise den Translationsstop codiert.
Start-Codons leiten den Beginn der Synthese einer Polypeptidkette ein, während Stopp-Codons zum Abbruch der Synthese und zur Freigabe der Polypeptidkette führen.
Der genetische Code ist degeneriert. Das bedeutet, es gibt eine höhere Anzahl an möglichen Basentripletts als die Gesamtzahl möglicher Aminosäuren. Daher codieren mehrere Codons für die gleiche Aminosäure. So codieren beispielsweise die Codons CGG, CGA, CGC, CGU, AGG und AGA für die Aminosäure Arginin (Arg).
Die sogenannte Code-Sonne zeigt dir, welche Codons der RNA welchen Aminosäuren entsprechen.
Mithilfe des StudySmarter Artikels zum genetischen Code kannst Du Dein Wissen zu dieser Thematik noch weiter vertiefen.
Die Information für die Aminosäurekette befindet sich auf dem Gen und wurde im Zuge der Transkription auf eine mRNA umgeschrieben. Anschließend wird die mRNA am Ribosom in eine Aminosäurekette (Polypeptidkette) übersetzt. Jeweils drei Basenpaare (Basentripletts oder Codon) auf der mRNA entsprechen hierbei einer Aminosäure.
Mit der Übersetzung der mRNA in eine Polypeptidkette ist die Translation abgeschlossen. Teilweise sind Polypeptide schon nach der Translation funktionsfähig. In den meisten Fällen jedoch müssen noch Modifikationen an den entstandenen Polypeptiden vorgenommen werden, damit ein funktionierendes Protein entsteht.
Tiefere Einblicke zum Ablauf der Translation erhältst du in dem entsprechenden StudySmarter Artikel.
In der folgenden Abbildung ist der Ablauf der Proteinbiosynthese als Flussdiagramm dargestellt. Dieses soll dir helfen, einen finalen Überblick über die Proteinbiosynthese zu erhalten.
Die Proteinbiosynthese stellt einen der zentralsten Prozesse im menschlichen Körper dar. Einfach gesagt, werden durch die Proteinbiosynthese neue Proteine in Zellen gebildet. Das Synthetisieren neuer Proteine geschieht nach einem durch die genetischen Informationen festgelegtem Plan.
Die Proteinbiosynthese, also die Synthetisierung von Proteinen, ist in zwei Hauptprozesse eingeteilt. Diese werden Transkription und Translation genannt.
Bei der Transkription wird ein DNA-Abschnitt in einen Strang mRNA übersetzt. Dabei wird nur einer der beiden DNA-Stränge, der codogene Strang, abgelesen.
Bei der Translation wird die (reife) mRNA in eine Aminosäuresequenz übersetzt. Dies geschieht durch Ribosomen im Cytoplasma, bei Eukaryoten also außerhalb
des Zellkerns.
Die zeitliche Dauer der einzelnen Reaktionsschritte nicht genau festgelegt, sondern bei jedem Durchgang unterschiedlich lang. Bei den einzelnen Reaktionsschritten spielt der Zufall eine große Rolle.
Derzeit ist es noch nicht möglich die Schrittzeiten direkt in lebenden Zellen zu messen, da deren hochkomplexes Inneres nicht mit molekularer Auflösung beobachtet werden kann. Deswegen werden Experimente in vitro durchgeführt.
Die Synthese eines Proteins nach der genetischen Information der DNA erfolgt in zwei Schritten: Transkription und Translation.
Der Prozess beginnt damit, dass sich die RNA-Polymerase an einer spezifischen Basenabfolge am codogenen DNA-Strang, der sogenannten Promoterregion, festsetzt. Die Promotorregion dient als Startsequenz für die RNA-Polymerase.
Wie möchtest du den Inhalt lernen?
94% der StudySmarter Nutzer erzielen bessere Noten.
Jetzt anmelden94% der StudySmarter Nutzer erzielen bessere Noten.
Jetzt anmeldenWie möchtest du den Inhalt lernen?
Kostenloser biologie Spickzettel
Alles was du zu . wissen musst. Perfekt zusammengefasst, sodass du es dir leicht merken kannst!
Sei rechtzeitig vorbereitet für deine Prüfungen.
Teste dein Wissen mit spielerischen Quizzes.
Erstelle und finde Karteikarten in Rekordzeit.
Erstelle die schönsten Notizen schneller als je zuvor.
Hab all deine Lermaterialien an einem Ort.
Lade unzählige Dokumente hoch und habe sie immer dabei.
Kenne deine Schwächen und Stärken.
Ziele Setze dir individuelle Ziele und sammle Punkte.
Nie wieder prokrastinieren mit unseren Lernerinnerungen.
Sammle Punkte und erreiche neue Levels beim Lernen.
Lass dir Karteikarten automatisch erstellen.
Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.
Melde dich an für Notizen & Bearbeitung. 100% for free.