StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
Americas
Europe
Dass bei der Genetik die Gene eine wichtige Rolle spielen und für sämtliche Merkmale zuständig sind, weißt Du sicher schon. Der Genetiker Thomas H. Morgan untersuchte im Jahr 1910 die Fruchtfliege Drosophila melanogaster. Sie besitzen nur vier Chromosomenpaare und vermehren sich innerhalb von wenigen Tagen, wobei eine Generation etwa zehn Tage lebt. Dadurch sind sie besonders in der Genetik oft…
Entdecke über 200 Millionen kostenlose Materialien in unserer App
Speicher die Erklärung jetzt ab und lies sie, wenn Du Zeit hast.
SpeichernLerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmeldenDass bei der Genetik die Gene eine wichtige Rolle spielen und für sämtliche Merkmale zuständig sind, weißt Du sicher schon. Der Genetiker Thomas H. Morgan untersuchte im Jahr 1910 die Fruchtfliege Drosophila melanogaster. Sie besitzen nur vier Chromosomenpaare und vermehren sich innerhalb von wenigen Tagen, wobei eine Generation etwa zehn Tage lebt. Dadurch sind sie besonders in der Genetik oft genutzte Versuchstiere.
Morgan stellte bei seinen Versuchen fest, dass bestimmte Merkmale gemeinsam an weitere Generationen weitergegeben werden. So fand er heraus, dass neben den Mendelschen Regeln auch die Genkopplung eine wichtige Rolle bei der Vererbung spielt.
Die Genkopplung beschreibt, ähnlich wie die Mendelschen Regeln, einen Vorgang innerhalb der Vererbung und zeigt auf, wie Merkmale mithilfe von Genen weitergegeben werden können.
Genkopplung ist ein Phänomen in der Genetik, bei welchem durch Gene codierte Merkmale im Laufe mehrerer Generationen gemeinsam vererbt werden. Die dritte Mendelsche Regel (Unabhängigkeitsregel) erweist sich hierbei als ungültig.
Durch die Genkopplung werden Merkmale meist in einer Kombination mit anderen Merkmalen zusammen vererbt. Diese Gruppe an gemeinsam vererbten Genen nennt man auch Kopplungsgruppe.
Bei der dritten Mendelschen Regel werden zwei unterschiedliche Merkmale der reinerbigen Elterngeneration weitergegeben. In der Kindergeneration werden die jeweiligen Merkmale frei und unabhängig voneinander vererbt, im Verhältnis 1:1:1:1. Daher nennt man sie auch Unabhängigkeitsregel oder Neukombinationsregel.
Damit es zu einer Genkopplung kommt, spielt sowohl die Anzahl der Gene als auch die Größe und Lage der Gene eine wichtige Rolle.
Die Genkopplung kann aufgrund der Anzahl der Gene auftreten. Das liegt daran, dass die Anzahl der Gene die Anzahl der homologen Chromosomenpaare deutlich übersteigt. Beim Menschen müssten z. B. etwa 20.000-25.000 Gene auf 23 Chromosomen aufgeteilt werden.
Wie Du weißt, sind Gene im Vergleich zur Gesamtlänge der DNA recht kurz und liegen auf den Chromosomen nah beieinander. Je nachdem, wie nah oder weit entfernt sie als Kopplungsgruppe liegen, kannst Du folgende Regeln unterscheiden:
Du möchtest mehr zu dem Thema Genetik oder den Mendelschen Regeln wissen? Dann schau gleich bei den passenden StudySmarter Artikeln vorbei!
Du kannst Dir die Genkopplung also als eine Art der Vererbung merken, bei der es zu einer gemeinsamen Vererbung bestimmter Gene kommt. Merkmale werden also in Kombination mit anderen Merkmalen zusammen vererbt und bilden eine Kopplungsgruppe. Grund dafür ist die Größe der Gene und dass sie auf den Chromosomen sehr nah beieinander liegen.
Das Crossing-over bezeichnet einen Prozess, der die Genkopplung wieder rückgängig machen kann.
Crossing-over (engl. Überkreuzung) bezeichnet den Austausch von ganzen Chromosomenteilen während der Meiose. Dieser Prozess spielt eine entscheidende Rolle bei der Rekombination (Neuverteilung) der Gene bei der Vererbung.
Beim Crossing-over legen sich zwei homologe Chromatiden während der Prophase I über Kreuz (engl. cross over). Dadurch kommt es an den Überlagerungsstellen zu einem Bruch, wo die neuen Bereiche zurück in die Chromatiden eingefügt werden. Du kannst es Dir auch als Kopplungsbruch merken, da hier Kopplungsgruppen wieder aufgebrochen werden.
Abbildung 1: Der Vorgang des Crossing-over und der Rekombination des Erbguts
Wenn Du noch mehr zum Crossing-over wissen möchtest, dann schau gleich bei dem passenden StudySmarter Artikel vorbei!
Die Genkartierung ermöglicht es, bestimmte Wahrscheinlichkeiten der Vererbung auf der DNA zu bestimmen.
Die Genkartierung ist die Bestimmung der Lage eines Gens mit bekannten Funktionen auf einem DNA-Molekül.
So werden z. B. Kopplungsanalysen zwischen genetischen Markern und dem zu kartierenden Gen untersucht. Du kannst also die Austauschhäufigkeit untersuchen. Wenn Du die Austauschhäufigkeit herausgefunden hast, kannst Du mit der entstandenen Genkarte die relative Lage der Gene angeben.
Es gibt auch die sogenannte physikalische Kartierung, bei der die genaue Lage eines Gens auf dem Chromosom untersucht wird. Dafür kann man z. B. bei Riesenchromosomen die Bänderungstechnik nutzen. Die Bänderungstechnik beschreibt eine Färbetechnik mit unterschiedlichen Farbstoffen, wodurch die typische Bänderung von Chromosomen sichtbar gemacht werden kann, z. B. unter einem Mikroskop.
Anfang des 20. Jahrhunderts untersuchte Thomas H. Morgan die Vererbung von Merkmalen bei der Fruchtfliege Drosophila melanogaster. Ziel war es, die genetische Abweichung der Fruchtfliege vom Wildtyp zu untersuchen.
Als Wildtyp bezeichnet man bei Pflanzen und bei Tieren das äußere Erscheinungsbild (Phänotyp) und das dazugehörige Genom (Genotyp), das sich durch die natürliche Evolution entwickelt hat. Der Wildtyp gilt daher als typisch für die jeweilige Art und als Standardform.
Um die Abweichung festzustellen, untersuchte er die Drosophila melanogaster in zwei verschiedenen Kreuzungsversuchen.
Für seinen ersten Kreuzungsversuch wählte Morgan Weibchen eines Laborstammes und Männchen des Wildtypstammes. Dabei unterschieden sie sich in bestimmten Merkmalen:
Merkmal | Weibchen | Männchen |
Körperfarbe | schwarz (black, Allel b) | grau (Allel, b*) |
Flügelausprägung | verkümmerte Flügen (vestigal wings, Allel vg) | normale Flüge (vg*) |
Homo- oder Heterozygot | reinerbig bezüglich ihrer Merkmale (b/b und vg/vg) | mischerbig (b*/b und vg*/vg) |
Würde man der dritten Mendelschen-Regel folgen, sollten bei dem Kreuzungsversuch vier unterschiedliche Phänotypen in der Kindergeneration im Verhältnis 1:1:1:1 auftreten:
Als Morgan den ersten Kreuzungsversuch durchführte, stellte er hingegen folgende Phänotypen in der Kindergeneration fest:
Das heißt, dass die Merkmale nur im Verhältnis 1:1 auftraten und die Phänotypen der Elterngeneration widerspiegelten.
Als Ergebnis des ersten Kreuzungsversuchs hielten Morgan und seine Mitarbeitenden fest, dass die Gene für die Körperfarbe und die Flügelform nicht frei kombinierbar sind, wie es die dritte Mendelsche-Regel (Unabhängigkeitsregel) besagen würde. Das bedeutet, dass die 3. Mendelsche Regel hier nicht zutrifft. Vielmehr sind die Merkmale gekoppelt und liegen gemeinsam auf einem Chromosom. Dort bilden die Allele des Chromosoms eine sogenannte Kopplungsgruppe.
Als Nächstes untersuchte Morgan die Vererbung eines mischerbigen Weibchens und eines reinerbigen Männchens. Hier stellte er fest, dass es zu vier verschiedenen Phänotypen kommt. Neben den bereits bekannten Phänotypen aus dem ersten Versuch kam es zu zwei weiteren Rekombinationen. Es gab nun auch Fruchtfliegen in der Kindergeneration mit grauem Körper und Stummelflügeln sowie schwarzen Fruchtfliegen mit normalen Flügeln.
Du kannst also folgende vier Kombinationen sehen: b/vg, b*/vg*, b/vg* und b*/vg.
Als Ergebnis des zweiten Kreuzungsversuchs stellte Morgan demnach fest, dass die Gene der Kopplungsgruppe bei dem Weibchen während der Meiose wieder entkoppelt werden können. Eine mögliche Ursache für den Austausch der Gene von zwei homologen Chromosomen stellt das Crossing-over dar. Allerdings führt dieser Austausch zu neuen rekombinierten Phänotypen.
Eine Genkopplung tritt immer dann auf, wenn die Anzahl der homologen Chromosomenpaare deutlich geringer ist als die Anzahl der codierten Gene. Beim Menschen sind es z.B. 20.000-25.000 Gene, die auf die 23 Chromosomen aufgeteilt werden müssen.
Gekoppelte Gene, sogenannte Kopplungsgruppen, können während der Meisose durch das Crossing-over getrennt werden. Es kommt zu einem Kopplungsbruch.
Eine Genkopplung kann mithilfe einer Genkartierung sichtbar gemacht werden.
Wie möchtest du den Inhalt lernen?
Wie möchtest du den Inhalt lernen?
Kostenloser biologie Spickzettel
Alles was du zu . wissen musst. Perfekt zusammengefasst, sodass du es dir leicht merken kannst!
Sei rechtzeitig vorbereitet für deine Prüfungen.
Teste dein Wissen mit spielerischen Quizzes.
Erstelle und finde Karteikarten in Rekordzeit.
Erstelle die schönsten Notizen schneller als je zuvor.
Hab all deine Lermaterialien an einem Ort.
Lade unzählige Dokumente hoch und habe sie immer dabei.
Kenne deine Schwächen und Stärken.
Ziele Setze dir individuelle Ziele und sammle Punkte.
Nie wieder prokrastinieren mit unseren Lernerinnerungen.
Sammle Punkte und erreiche neue Levels beim Lernen.
Lass dir Karteikarten automatisch erstellen.
Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.
Melde dich an für Notizen & Bearbeitung. 100% for free.
Speichere Erklärungen in deinem persönlichen Bereich und greife jederzeit und überall auf sie zu!
Mit E-Mail registrieren Mit Apple registrierenDurch deine Registrierung stimmst du den AGBs und der Datenschutzerklärung von StudySmarter zu.
Du hast schon einen Account? Anmelden