Login Anmelden

Select your language

Suggested languages for you:
StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
|
|
Genkopplung

Dass bei der Genetik die Gene eine wichtige Rolle spielen und für sämtliche Merkmale zuständig sind, weißt Du sicher schon. Der Genetiker Thomas H. Morgan untersuchte im Jahr 1910 die Fruchtfliege Drosophila melanogaster. Sie besitzen nur vier Chromosomenpaare und vermehren sich innerhalb von wenigen Tagen, wobei eine Generation etwa zehn Tage lebt. Dadurch sind sie besonders in der Genetik oft…

Von Expert*innen geprüfte Inhalte
Kostenlose StudySmarter App mit über 20 Millionen Studierenden
Mockup Schule

Entdecke über 200 Millionen kostenlose Materialien in unserer App

Genkopplung

Genkopplung

Speicher die Erklärung jetzt ab und lies sie, wenn Du Zeit hast.

Speichern
Illustration

Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken

Jetzt kostenlos anmelden

Nie wieder prokastinieren mit unseren Lernerinnerungen.

Jetzt kostenlos anmelden
Illustration

Dass bei der Genetik die Gene eine wichtige Rolle spielen und für sämtliche Merkmale zuständig sind, weißt Du sicher schon. Der Genetiker Thomas H. Morgan untersuchte im Jahr 1910 die Fruchtfliege Drosophila melanogaster. Sie besitzen nur vier Chromosomenpaare und vermehren sich innerhalb von wenigen Tagen, wobei eine Generation etwa zehn Tage lebt. Dadurch sind sie besonders in der Genetik oft genutzte Versuchstiere.

Morgan stellte bei seinen Versuchen fest, dass bestimmte Merkmale gemeinsam an weitere Generationen weitergegeben werden. So fand er heraus, dass neben den Mendelschen Regeln auch die Genkopplung eine wichtige Rolle bei der Vererbung spielt.

Genkopplung Definition

Die Genkopplung beschreibt, ähnlich wie die Mendelschen Regeln, einen Vorgang innerhalb der Vererbung und zeigt auf, wie Merkmale mithilfe von Genen weitergegeben werden können.

Genkopplung ist ein Phänomen in der Genetik, bei welchem durch Gene codierte Merkmale im Laufe mehrerer Generationen gemeinsam vererbt werden. Die dritte Mendelsche Regel (Unabhängigkeitsregel) erweist sich hierbei als ungültig.

Durch die Genkopplung werden Merkmale meist in einer Kombination mit anderen Merkmalen zusammen vererbt. Diese Gruppe an gemeinsam vererbten Genen nennt man auch Kopplungsgruppe.

Bei der dritten Mendelschen Regel werden zwei unterschiedliche Merkmale der reinerbigen Elterngeneration weitergegeben. In der Kindergeneration werden die jeweiligen Merkmale frei und unabhängig voneinander vererbt, im Verhältnis 1:1:1:1. Daher nennt man sie auch Unabhängigkeitsregel oder Neukombinationsregel.

Gründe für eine Genkopplung

Damit es zu einer Genkopplung kommt, spielt sowohl die Anzahl der Gene als auch die Größe und Lage der Gene eine wichtige Rolle.

Anzahl der Gene

Die Genkopplung kann aufgrund der Anzahl der Gene auftreten. Das liegt daran, dass die Anzahl der Gene die Anzahl der homologen Chromosomenpaare deutlich übersteigt. Beim Menschen müssten z. B. etwa 20.000-25.000 Gene auf 23 Chromosomen aufgeteilt werden.

Größe und Lage der Gene

Wie Du weißt, sind Gene im Vergleich zur Gesamtlänge der DNA recht kurz und liegen auf den Chromosomen nah beieinander. Je nachdem, wie nah oder weit entfernt sie als Kopplungsgruppe liegen, kannst Du folgende Regeln unterscheiden:

  1. Je näher Gene räumlich beieinander liegen, desto höher ist die Wahrscheinlichkeit, dass sie nicht durch Crossing-over getrennt werden. Man nennt sie dann gekoppelte Gene. Durch die gekoppelten Gene sinkt die Rekombinationswahrscheinlichkeit.
  2. Je weiter entfernt Gene liegen, desto höher ist dagegen die Wahrscheinlichkeit, dass sie durch das Crossing-over aufgetrennt werden. Dadurch kann es zu einem sogenannten Kopplungsbruch kommen.

Du möchtest mehr zu dem Thema Genetik oder den Mendelschen Regeln wissen? Dann schau gleich bei den passenden StudySmarter Artikeln vorbei!

Genkopplung einfach erklärt

Du kannst Dir die Genkopplung also als eine Art der Vererbung merken, bei der es zu einer gemeinsamen Vererbung bestimmter Gene kommt. Merkmale werden also in Kombination mit anderen Merkmalen zusammen vererbt und bilden eine Kopplungsgruppe. Grund dafür ist die Größe der Gene und dass sie auf den Chromosomen sehr nah beieinander liegen.

Genkopplung Crossing-over

Das Crossing-over bezeichnet einen Prozess, der die Genkopplung wieder rückgängig machen kann.

Crossing-over (engl. Überkreuzung) bezeichnet den Austausch von ganzen Chromosomenteilen während der Meiose. Dieser Prozess spielt eine entscheidende Rolle bei der Rekombination (Neuverteilung) der Gene bei der Vererbung.

Beim Crossing-over legen sich zwei homologe Chromatiden während der Prophase I über Kreuz (engl. cross over). Dadurch kommt es an den Überlagerungsstellen zu einem Bruch, wo die neuen Bereiche zurück in die Chromatiden eingefügt werden. Du kannst es Dir auch als Kopplungsbruch merken, da hier Kopplungsgruppen wieder aufgebrochen werden.

Genkopplung Crossing Over StudySmarterAbbildung 1: Der Vorgang des Crossing-over und der Rekombination des Erbguts

Wenn Du noch mehr zum Crossing-over wissen möchtest, dann schau gleich bei dem passenden StudySmarter Artikel vorbei!

Genkopplung Genkartierung

Die Genkartierung ermöglicht es, bestimmte Wahrscheinlichkeiten der Vererbung auf der DNA zu bestimmen.

Die Genkartierung ist die Bestimmung der Lage eines Gens mit bekannten Funktionen auf einem DNA-Molekül.

So werden z. B. Kopplungsanalysen zwischen genetischen Markern und dem zu kartierenden Gen untersucht. Du kannst also die Austauschhäufigkeit untersuchen. Wenn Du die Austauschhäufigkeit herausgefunden hast, kannst Du mit der entstandenen Genkarte die relative Lage der Gene angeben.

Es gibt auch die sogenannte physikalische Kartierung, bei der die genaue Lage eines Gens auf dem Chromosom untersucht wird. Dafür kann man z. B. bei Riesenchromosomen die Bänderungstechnik nutzen. Die Bänderungstechnik beschreibt eine Färbetechnik mit unterschiedlichen Farbstoffen, wodurch die typische Bänderung von Chromosomen sichtbar gemacht werden kann, z. B. unter einem Mikroskop.

Genkopplung – Beispiel der Drosophila melanogaster

Anfang des 20. Jahrhunderts untersuchte Thomas H. Morgan die Vererbung von Merkmalen bei der Fruchtfliege Drosophila melanogaster. Ziel war es, die genetische Abweichung der Fruchtfliege vom Wildtyp zu untersuchen.

Als Wildtyp bezeichnet man bei Pflanzen und bei Tieren das äußere Erscheinungsbild (Phänotyp) und das dazugehörige Genom (Genotyp), das sich durch die natürliche Evolution entwickelt hat. Der Wildtyp gilt daher als typisch für die jeweilige Art und als Standardform.

Um die Abweichung festzustellen, untersuchte er die Drosophila melanogaster in zwei verschiedenen Kreuzungsversuchen.

Erster Kreuzungsversuch: Reinerbige Weibchen und mischerbige Männchen

Für seinen ersten Kreuzungsversuch wählte Morgan Weibchen eines Laborstammes und Männchen des Wildtypstammes. Dabei unterschieden sie sich in bestimmten Merkmalen:

MerkmalWeibchenMännchen
Körperfarbeschwarz (black, Allel b)grau (Allel, b*)
Flügelausprägungverkümmerte Flügen (vestigal wings, Allel vg)normale Flüge (vg*)
Homo- oder Heterozygotreinerbig bezüglich ihrer Merkmale (b/b und vg/vg)mischerbig (b*/b und vg*/vg)

Würde man der dritten Mendelschen-Regel folgen, sollten bei dem Kreuzungsversuch vier unterschiedliche Phänotypen in der Kindergeneration im Verhältnis 1:1:1:1 auftreten:

  • grau/normale Flügel
  • grau/verkümmerte Flügel
  • schwarz/verkümmerte Flügel
  • schwarz/normale Flügel

Als Morgan den ersten Kreuzungsversuch durchführte, stellte er hingegen folgende Phänotypen in der Kindergeneration fest:

  • graue/normale Flügel
  • schwarze/verkümmerte Flügel

Das heißt, dass die Merkmale nur im Verhältnis 1:1 auftraten und die Phänotypen der Elterngeneration widerspiegelten.

Als Ergebnis des ersten Kreuzungsversuchs hielten Morgan und seine Mitarbeitenden fest, dass die Gene für die Körperfarbe und die Flügelform nicht frei kombinierbar sind, wie es die dritte Mendelsche-Regel (Unabhängigkeitsregel) besagen würde. Das bedeutet, dass die 3. Mendelsche Regel hier nicht zutrifft. Vielmehr sind die Merkmale gekoppelt und liegen gemeinsam auf einem Chromosom. Dort bilden die Allele des Chromosoms eine sogenannte Kopplungsgruppe.

Zweiter Kreuzungsversuch: Mischerbige Weibchen und reinerbige Männchen

Als Nächstes untersuchte Morgan die Vererbung eines mischerbigen Weibchens und eines reinerbigen Männchens. Hier stellte er fest, dass es zu vier verschiedenen Phänotypen kommt. Neben den bereits bekannten Phänotypen aus dem ersten Versuch kam es zu zwei weiteren Rekombinationen. Es gab nun auch Fruchtfliegen in der Kindergeneration mit grauem Körper und Stummelflügeln sowie schwarzen Fruchtfliegen mit normalen Flügeln.

Du kannst also folgende vier Kombinationen sehen: b/vg, b*/vg*, b/vg* und b*/vg.

Als Ergebnis des zweiten Kreuzungsversuchs stellte Morgan demnach fest, dass die Gene der Kopplungsgruppe bei dem Weibchen während der Meiose wieder entkoppelt werden können. Eine mögliche Ursache für den Austausch der Gene von zwei homologen Chromosomen stellt das Crossing-over dar. Allerdings führt dieser Austausch zu neuen rekombinierten Phänotypen.

Genkopplung – Das Wichtigste

  • Die Genkopplung beschreibt, dass codierte Merkmale auf Genen über mehrere Generationen gemeinsam vererbt werden können
    • Kopplungsgruppen sind der Zusammenschluss von Genen
  • Während der Meiose kann es zu einem Crossing-over kommen
    • Crossing-over bedeutet einen Kopplungsbruch und neue Rekombinationen, da gekoppelte Gene aufgelöst und die Merkmale frei kombinierbar werden
  • 1910 untersuchte Thomas H. Morgan die Fruchtfliege Drosophila melanogaster und stellte erstmals die Genkopplung fest.
  • Mithilfe der Genkarte kann eine Genkopplung sichtbar gemacht werden.

Nachweise

  1. DocCheck.com: Genkopplung
  2. bionity.com: Genkopplung
  3. meinstein.ch: drosophila genkopplung und kopplungsgruppen

Häufig gestellte Fragen zum Thema Genkopplung

Eine Genkopplung tritt immer dann auf, wenn die Anzahl der homologen Chromosomenpaare deutlich geringer ist als die Anzahl der codierten Gene. Beim Menschen sind es z.B. 20.000-25.000 Gene, die auf die 23 Chromosomen aufgeteilt werden müssen.

Gekoppelte Gene, sogenannte Kopplungsgruppen, können während der Meisose durch das Crossing-over getrennt werden. Es kommt zu einem Kopplungsbruch.

Eine Genkopplung kann mithilfe einer Genkartierung sichtbar gemacht werden.

Finales Genkopplung Quiz

Genkopplung Quiz - Teste dein Wissen

Frage

Was bedeutet Polygenie?

Antwort anzeigen

Antwort

Die Polygenie beschreibt, dass die Ausprägung eines Merkmals durch mehrere Gene gesteuert wird.

Frage anzeigen

Frage

Welche Arten von Polygenie gibt es?

Antwort anzeigen

Antwort

Es gibt die additive und die komplementäre Polygenie.

Frage anzeigen

Frage

Wodurch zeichnet sich die additive Polygenie aus?

Antwort anzeigen

Antwort

Bei der additiven Polygenie verstärken sich die beteiligten Gene gegenseitig. Wenn ein Gen nicht exprimiert wird, kann das Merkmal trotzdem ausgeprägt sein.

Frage anzeigen

Frage

Was versteht man unter der komplementären Polygenie?

Antwort anzeigen

Antwort

Bei der komplementären Polygenie sind die beteiligten Gene voneinander abhängig. Wird ein Gen nicht exprimiert oder ist fehlerhaft, kommt es nicht zur Ausprägung des betroffenen Merkmals.

Frage anzeigen

Frage

Was sind polygene Erkrankungen?

Antwort anzeigen

Antwort

Polygene Erkrankungen werden durch mehrere fehlerhafte Gene hervorgerufen, wobei äußere Einflüsse ebenfalls eine wichtige Rolle beim Ausbrechen der Krankheit haben.

Frage anzeigen

Frage

Nenne 3 Beispiele für polygene Erkrankungen.

Antwort anzeigen

Antwort

Mögliche Antworten:

  1. Typ-2-Diabetes
  2. Herz-Kreislauf-Erkrankungen
  3. Allergien
  4. Hautkrebs
  5. Bluthochdruck

Frage anzeigen

Frage

Nenne ein Beispiel für ein Merkmal, was polygenetisch vererbt wird.

Antwort anzeigen

Antwort

Die Hautfarbe wird polygenetisch vererbt.

Frage anzeigen

Frage

Nenne ein Beispiel für einen biologischen Ablauf, der durch komplementäre Polygenie beeinflusst wird.

Antwort anzeigen

Antwort

Wird bei der komplementären Polygenie ein Gen nicht exprimiert oder ist defekt, so kann es z.B. zu Blutgerinnungsstörungen kommen.

Frage anzeigen

Frage

Was ist ein alternativer Begriff für die additive Polygenie?

Antwort anzeigen

Antwort

Der Begriff "additive Genwirkung" beschreibt dasselbe wie die additive Polygenie.

Frage anzeigen

Frage

Wie werden polygene Krankheiten auch genannt?

Antwort anzeigen

Antwort

  1. multifaktorielle Erkrankungen
  2. polygenetische Erkankungen

Frage anzeigen

Frage

Was bedeutet Genkopplung?

Antwort anzeigen

Antwort

Die Genkopplung beschreibt codierte Merkmale auf den Genen, die im Laufe mehrerer Generationen gemeinsam vererbt werden.

Frage anzeigen

Frage

Welche Mendelsche Regel greift bei der Genkopplung nicht?

Antwort anzeigen

Antwort

Unifomitätsregel

Frage anzeigen

Frage

Wann tritt eine Genkopplung auf?

Antwort anzeigen

Antwort

Die Genkopplung tritt immer dann auf, wenn die Anzahl der Gene die Anzahl der verfügbaren Chromosomenpaare deutlich übersteigt.

Frage anzeigen

Frage

Was ist eine Kopplungsgruppe?

Antwort anzeigen

Antwort

Eine Kopplungsgruppe ist der Zusammenschluss der gemeinsam vererbten Gene mit den codierten Merkmalen.

Frage anzeigen

Frage

Was ist Crossing-over?

Antwort anzeigen

Antwort

Crossing Over bezeichnet den Austausch von ganzen Chromosomenteilen während der Meiose und kann zu einem Auflösen von Kopplungsgruppen führen.

Frage anzeigen

Frage

Wie nennt man es, wenn gekoppelte Gene getrennt werden?

Antwort anzeigen

Antwort

Werden gekoppelte Gene getrennt, spricht man auch von einem sogenannten Kopplungsbruch.

Frage anzeigen

Frage

Was ist eine Genkartierung?

Antwort anzeigen

Antwort

Die Genkartierung ist die Bestimmung der Lage eines Gens mit bekannten Funktionen auf einem DNA-Molekül.

Frage anzeigen

Frage

Wofür kann eine Genkartierung genutzt werden?

Antwort anzeigen

Antwort

Eine Genkartierung kann z.B. für eine Kopplungsanalyse genutzt werden.

Frage anzeigen

Frage

Was ist die Kopplungsanalyse?

Antwort anzeigen

Antwort

Die Kopplungsanalyse kann genutzt werden, um die Austauschwahrscheinlichkeit zwischen den genetischen Markern und dem zu kartierenden Gen aufzuzeigen. 

Frage anzeigen

Frage

Was untersuchte Thomas H. Morgan?

Antwort anzeigen

Antwort

Thomas H. Morgan untersuchte 1910 die Drosophila melanogaster, um die Vererbung einzelner Merkmale zu untersuchen.

Frage anzeigen

Frage

Was war das Ergebnis des ersten Kreuzungsversuchs von Morgan an den Fruchtfliegen?

Antwort anzeigen

Antwort

Die Kindergeneration zeigte die Phänotypen der Eltern im Verhältnis 1:1  dar.

Frage anzeigen

Frage

Welche Kombination zeigte die Elterngeneration beim ersten Kreuzungsversuch nach Morgan?

Antwort anzeigen

Antwort

Reinerbige Weibchen und mischerbige Männchen.

Frage anzeigen

Frage

Was war das Ergebnis des zweiten Kreuzungsversuchs nach Morgan an den Fruchtfliegen?

Antwort anzeigen

Antwort

Die dritte Mendelsche Regel greift wieder und in der Kindergeneration tritt der Phänotyp wieder im Verhältnis 1:1:1:1 auf.

Frage anzeigen

Frage

Was wird durch die Genkopplung eingeschränkt?

Antwort anzeigen

Antwort

Die Genkopplung schränkt die Rekombinationsmöglichkeit der codierten Merkmale auf den Genen ein.

Frage anzeigen

Frage

Was wird durch das Crossing-over wieder möglich?

Antwort anzeigen

Antwort

Durch das Aufbrechen von Kopplungsgruppen wird die Neuerungs- bzw. Rekombinationsmöglichkeit erweitert.

Frage anzeigen

60%

der Nutzer schaffen das Genkopplung Quiz nicht! Kannst du es schaffen?

Quiz starten

Wie möchtest du den Inhalt lernen?

Karteikarten erstellen
Inhalte meiner Freund:innen lernen
Ein Quiz machen

Wie möchtest du den Inhalt lernen?

Karteikarten erstellen
Inhalte meiner Freund:innen lernen
Ein Quiz machen

Kostenloser biologie Spickzettel

Alles was du zu . wissen musst. Perfekt zusammengefasst, sodass du es dir leicht merken kannst!

Jetzt anmelden

Finde passende Lernmaterialien für deine Fächer

Alles was du für deinen Lernerfolg brauchst - in einer App!

Lernplan

Sei rechtzeitig vorbereitet für deine Prüfungen.

Quizzes

Teste dein Wissen mit spielerischen Quizzes.

Karteikarten

Erstelle und finde Karteikarten in Rekordzeit.

Notizen

Erstelle die schönsten Notizen schneller als je zuvor.

Lern-Sets

Hab all deine Lermaterialien an einem Ort.

Dokumente

Lade unzählige Dokumente hoch und habe sie immer dabei.

Lern Statistiken

Kenne deine Schwächen und Stärken.

Wöchentliche

Ziele Setze dir individuelle Ziele und sammle Punkte.

Smart Reminders

Nie wieder prokrastinieren mit unseren Lernerinnerungen.

Trophäen

Sammle Punkte und erreiche neue Levels beim Lernen.

Magic Marker

Lass dir Karteikarten automatisch erstellen.

Smartes Formatieren

Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.

Melde dich an für Notizen & Bearbeitung. 100% for free.

Fang an mit StudySmarter zu lernen, die einzige Lernapp, die du brauchst.

Jetzt kostenlos anmelden
Illustration