Select your language

Suggested languages for you:
Log In Anmelden
StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
|
|

Die All-in-one Lernapp:

  • Karteikarten
  • NotizenNotes
  • ErklärungenExplanations
  • Lernpläne
  • Übungen
App nutzen

Genetischer Code

Save Speichern
Print Drucken
Edit Bearbeiten
Melde dich an und nutze alle Funktionen. Jetzt anmelden
Biologie

Ohne den genetischen Code könnte kein Lebewesen existieren. Er ist für die Herstellung der Eiweiße (Proteine) des Körpers unverzichtbar. Dabei gibt der genetische Code vor, nach welchem Schema die Basen der DNS (=DNA) zu Aminosäuren in der Proteinbiosynthese übersetzt werden.

Das Erbgut aller Organismen ist mit dem genetischen Code verschlüsselt und die Entschlüsselung führt zur Herstellung der Proteine.

Die bekannte Abkürzung DNA kommt aus dem Englischen und steht für deoxyribonucleic acid und wird oft synonym für die deutsche Abkürzung DNS, Desoxyribonukleinsäure, verwendet. Sie stellt das Erbgut dar.

Definition und Aufbau des genetischen Codes

Der genetische Code besteht aus spezifischen, aufeinanderfolgenden Basen (Nukleotiden) in der DNA. Dabei gibt es die Basen Thymin (T), Arginin (A), Guanin (G) und Cytosin (C).

Die komplementäre Base von Guanin ist Cytosin. Die komplementäre Base von Arginin ist Thymin. Dabei kommt Thymin nur auf der DNA vor. Die mRNA beinhaltet nicht Thymin, sondern eine ähnliche Base, das Uracil (U).

Die mRNA ist eine Abschrift der DNA. Sie wird während der Transkription gebildet, indem eine RNA-Polymerase den codogenen DNA-Strang abliest und eine komplementäre mRNA bildet. Die mRNA ist im Gegensatz zur DNA eine einsträngige Nukleinsäure und kann aus dem Zellkern zu den Ribosomen transportiert werden. Dort wird sie Codon für Codon in eine Aminosäuresequenz übertragen. Diesen Prozess nennt man Translation.

Eine Übersicht zum Ablauf der Proteinbiosynthese findest Du hier:

Genetischer Code Proteinbiosynthese Übersicht StudySmarterAbbildung 1: Vereinfachte Darstellung des Wegs der Proteinbiosynthese

Im Folgenden lernst Du den Aufbau, sowie die verschiedenen Arten von Codons auf der mRNA kennen.

Der Aufbau des Codons

Wie ist ein Codon aufgebaut und was für Codons gibt es?

Ein Codon besteht aus drei Nukleotiden, sogenannten Tripletts. Dabei werden diese meist, aber nicht immer, in Aminosäuren übersetzt. Dieser Triplett Code wird auch als Triplett-Raster-Code bezeichnet.

Codons für Aminosäuren

Eine Aminosäure wird durch eine Basensequenz mit drei Basen bestimmt. Dieses Basentriplett bezeichnet man als Codon. Es gibt 64 mögliche Kombinationsmöglichkeiten von Basentripletts, aber nur 20 verschiedene Aminosäuren. Diese werden von 61 Codons abgedeckt. Die meisten Aminosäuren können also von unterschiedlichen Codons erzeugt werden.

Start- und Stoppcodons

Ein Codon, das normalerweise für eine Aminosäure codiert, dient auch gleichzeitig als Startcodon. Dabei handelt es sich um das Triplett AUG, das zusätzlich für die Codierung der Aminosäure Methionin zuständig ist. Das Startcodon wird benötigt, um mit dem Ablesen der mRNA beginnen zu können.

Die anderen drei Basentripletts werden als Stoppcodons bezeichnet – sie stellen den Punkt dar, an dem die Translation abgebrochen wird. Danach wird die fertige Aminosäurekette an den Ribosomen freigegeben.

Du kannst Dir die DNA wie ein Buch vorstellen. Die Basen sind Buchstaben, die Codons Wörter und die Gensequenzen Sätze. Zusammen bilden sie einen gesamten Roman.

Die Funktion des genetischen Codes

Der genetische Code trägt dazu bei, dass im Körper die Aminosäure-Produktion und damit auch die Eiweißproduktion ablaufen kann. Dieser Prozess wird auch Proteinbiosynthese genannt. Dabei ist die Reihenfolge der Aminosäuren in Genen auf der DNA gespeichert.

Die DNA liegt gut geschützt im Zellkern einer jeden Körperzelle vor. Von dort aus kann das Erbgut abgelesen und mithilfe des genetischen Codes in Proteine übersetzt werden.

Die Proteine sind an wichtigen Prozessen, z. B. am Aufbau von Körperbestandteilen wie Haaren, Muskelfasern, Blutkörperchen oder Sehnen beteiligt. Außerdem katalysieren sie viele biochemische Reaktionen. Das heißt, sie beschleunigen Reaktionen, ohne dabei selbst verbraucht zu werden, indem sie die Aktivierungsenergie einer Reaktion herabsetzen.

Dabei gibt der genetische Code vor, nach welchem Schema die Basensequenz der DNA in Aminosäuren übersetzt wird. Durch ihn wird sowohl der Phänotyp von Lebewesen, als auch der Zellstoffwechsel kontrolliert, der von Proteinen gesteuert wird.

Der Phänotyp eines Lebewesens ist definiert als dessen äußeres Erscheinungsbild. Der Genotyp ist die Gesamtheit aller Erbanlagen. Der Phänotyp ist also nur auf die genetische Information beschränkt, deren Ausprägung nach außen hin sichtbar wird, während der Genotyp alle Erbanlagen umfasst.

Entschlüsselung des genetischen Codes

Der genetische Code ist die Entschlüsselung der Erbinformationen, also der DNA. Bei der ersten Phase der Proteinbiosynthese, der Transkription, wird zunächst eine Kopie von einem Teil der DNA angefertigt. Diese Kopie nennt sich Messenger-RNA (mRNA). Mit ihrer Hilfe wird dann die DNA während der Translation, Codon für Codon an den Ribosomen abgelesen und durch den genetischen Code entschlüsselt.

Um die Codons an den Ribosomen zu übersetzen, lagern sich komplementäre Tripletts an die DNS. Diese setzen ihre spezifische Aminosäure ab. Aus der Aneinanderreihung der Aminosäuren wird eine Aminosäurekette gebildet, die auch als Primärstruktur der Proteine bekannt ist.

Die spezifische Aminosäuresequenz bildet im Komplex das benötigte Protein. Den Ablauf von der DNA bis zur Proteinentstehung wird als Proteinbiosynthese bezeichnet. Diese ist in Abbildung 1 dargestellt.

Die Code-Sonne

Die Code-Sonne hilft Dir, bei einem Codon die dazugehörige Aminosäure abzulesen. Die Vorlage, auf der Du die Code-Sonne anwendest, ist die mRNA. Eine Transkription der DNA hat also vorher schon stattgefunden.

Genetischer Code Codesonne StudySmarterAbbildung 2: Die Code-Sonne.Quelle: wikipedia.org

Die Code-Sonne wird von innen nach außen gelesen. Dabei fängst Du mit der ersten Base (das heißt: vom 5' Ende zum 3' Ende) Deines Codons an und arbeitest Dich nach außen vor. Dadurch findest Du heraus, welche Aminosäure hinter einem Basentriplett steckt.

Das 3‘ Ende ist das Ende der mRNA, welches eine Carboxylgruppe trägt. Diese besteht aus einem Kohlenstoffatom, welches eine Doppelbindung zu einem Sauerstoffmolekül eingeht und mit dem Rest des mRNA Strangs verbunden ist. Zudem ist am Kohlenstoffatom eine OH-Gruppe gebunden.

Das 5‘ Ende besitzt eine Aminogruppe an ihrem Ende. Diese besteht aus einem Stickstoffatom, an welchem zwei Wasserstoffe gebunden sind.

Eigenschaften des genetischen Codes

Der genetische Code wird entschlüsselt und abgelesen. Um diese Vorgänge zu ermöglichen, benötigt es spezielle Eigenschaften.

1. Der genetische Code ist universell

Nahezu überall ist der genetische Code gleichbleibend: Codons von Bakterien bis zu Menschen codieren für die gleichen Aminosäuren. Es gibt nur wenige Ausnahmen, in denen das nicht so ist, z. B. bei Mitochondrien. Daher wird der genetische Code als universell bezeichnet.

Diese Eigenschaft ist besonders für die Gentechnik sehr nützlich. Dort kann etwa ein Ausschnitt menschlicher DNA, der für ein Enzym codiert, in ein Bakterium geschleust werden. Dieser DNA Ausschnitt wird im Bakterium abgelesen. Dadurch werden auch im Bakterium menschliche Enzyme hergestellt.

2. Der genetische Code ist redundant / degeneriert

Im Allgemeinen kannst Du Dir immer merken: Ein Basentriplett steht immer nur für eine Aminosäure, aber eine Aminosäure steht nicht nur für ein Basentriplett.

Das liegt daran, weil es 64 verschiedene Kombinationsmöglichkeiten für Codons gibt, aber nur 20 Aminosäuren. Es ist unvermeidbar, dass verschiedene Codons die gleiche Aminosäure bilden. Daher wird der genetische Code als redundant oder degeneriert bezeichnet.

Das bedeutet, dass beispielsweise die Aminosäure Valin (Val) sowohl aus dem Triplet GUG, als auch aus dem Triplet GUU gebildet werden kann. Diese sind mehrere Basenabfolgen, die trotzdem alle Valin als übersetzte Aminosäure besitzen.

3. Der genetische Code ist eindeutig

Ein Triplett aus Basen codiert immer für die gleiche Aminosäure. Es ist also eindeutig, dass eine bestimmte Basenabfolge aus drei Basen, immer die gleiche Aminosäure als Ergebnis hat.

4. Der genetische Code ist komma- und überlappungsfrei

Ein Triplett steht immer für sich. Die Tripletts werden Codon für Codon abgelesen, ohne sich zu überschneiden. Erst nachdem ein Codon fertig abgelesen wurde, kommt das Nächste an die Reihe. Es gibt also keine Überlappungen und es wird auch mitten im Ablesevorgang kein Codon ausgelassen.

Die Fehlertoleranz des genetischen Codes

Dass mehrere Codons die gleiche Aminosäure codieren, ist sehr vorteilhaft. So kann es nämlich vorkommen, dass Mutationen keine Wirkung aufweisen (auch stumme Mutation genannt).

Allgemein ist eine Mutation eine Veränderung des Erbguts, also der DNA. Dabei kann eine Mutation zu einer Erkrankung oder Beeinträchtigung führen, sie muss es aber nicht. Es gibt auch eine Vielzahl an Mutationen der DNA, die gänzlich unbemerkt bleiben. Dabei kommt es meist darauf an, wie stark die Veränderung der DNA ist.

Dies ist aber nicht allein ausschlaggebend. So hat beispielsweise eine Mutation an einer Base, die dadurch zum Stopp-Codon wird, einen Stopp der Translation zur Folge. Dadurch kann kein funktionsfähiges Protein entstehen. So eine Mutation nennt sich Nonsense Mutation.

Unauffällige Mutationen, bei denen trotz Veränderung die gleiche Aminosäure herauskommt, heißen stumme Mutationen. Durch sie hat der genetische Code eine relativ hohe Fehlertoleranz. Das bedeutet, dass durch eine solche Mutation nicht sofort das Protein verändert oder funktionsuntüchtig wird.

Ein Codon, welches für die Aminosäure Isoleucin steht, ist AUU. Es kommt zu einer Mutation der DNA und die dritte Base Uracil wird durch Arginin ausgetauscht. Diese Veränderung der DNA macht keinen Unterschied, da auch die Kombination AUA für Isoleucin codiert. Somit liegt hier eine stumme Mutation vor.

Häufig müssen nur zwei Basen eines Tripletts unverändert bleiben, damit sich die richtige Aminosäure ergibt.

Das kannst Du auch an der Code-Sonne erkennen, an der teilweise alle vier letzten Basen für die gleiche Aminosäure codieren (siehe Valin).

Denn selbst wenn die veränderte Base einmal nicht zur gleichen Aminosäure führt, so kommt meistens doch eine Aminosäure mit ähnlichen Eigenschaften heraus. Das lässt sich daraus ableiten, dass Basen an bestimmten Plätzen spezifische Eigenschaften der Aminosäure hervorrufen.

Die Tripletts mit der Base Uracil in der Mitte (U) sind meist hydrophob. Tripletts mit der Base Adenin in der Mitte (A) sind hydrophil. Daraus lässt sich schließen, dass die Veränderung der ersten Base meistens am schwerwiegendsten ist. Die erste Base gibt nämlich die Art der Ladung der Aminosäure an. Wird die Ladung umgekehrt, so hat dies schwerwiegendere Folgen für die Funktion des Proteins.

Der genetische Code Das Wichtigste

  • Der genetische Code besteht aus spezifischen, aufeinanderfolgenden Basen in der DNA.
  • Er wird während der Proteinbiosynthese abgelesen, und liefert die Bauanleitung für Proteine aus Aminosäuren.
  • Ein Codon ist eine Kombination aus drei Basen. Es codiert genau für eine Aminosäure.
  • Mithilfe der Code-Sonne kann man den genetischen Code entschlüsseln.
  • Der genetische Code ist universell, redundant, bzw. degeneriert, eindeutig und überlappungsfrei.
  • Die Fehlertoleranz des genetischen Codes ist hoch.

Genetischer Code

Der genetische Code ist sozusagen die Anleitung zum Bau von Proteinen. Er besteht aus Basentripletts in unserer DNA. Basentripletts werden bei der Transkription abgelesen und in eine mRNA überschrieben. RNA kann im Gegensatz zur DNA aus dem Zellkern zu den Ribosomen transportiert werden. An den Ribosomen wird über die aufeinander folgenden Basentriplets eine Aminosäuresequenz synthetisiert. Die Aminosäuresequenz kann im Anschluss zu einem Protein gefaltet werden.   

Redundant bedeutet, dass mehrere verschiedene Codons die gleiche Aminosäure bilden können, da es mehr Kombinationsmöglichkeiten (64) als Aminosäuren (20) gibt. Daher: Ein Basentriplett steht immer nur für eine Aminosäure. Aber eine Aminosäure steht nicht nur für ein Basentriplett!

Der genetische Code ist universell und redundant bzw. degeneriert. Universell bedeutet, dass der genetische Code in allen Lebewesen den gleichen Regeln folgt. Ein Codon codiert von Bakterie bis zu Mensch stets die gleiche Aminosäure. Redundant bzw. degeneriert bedeutet, dass es mehrere Kombinationsmöglichkeiten von Basentripletts für die gleiche Aminosäure gibt.

Der genetische Code besteht aus spezifischen, aufeinanderfolgenden Nukleotiden in der DNA. Er wird bei der Proteinbiosynthese abgelesen und liefert den Bauplan für die Zusammensetzung (Reihenfolge) von Aminosäuren zu einem Protein. 

Finales Genetischer Code Quiz

Frage

Wie nennt man drei aufeinanderfolgenden Basen der DNA?

Antwort anzeigen

Antwort

Triplett oder Codon

Frage anzeigen

Frage

Was macht ein Codon?

Antwort anzeigen

Antwort

codieren für eine Aminosäure

Frage anzeigen

Frage

Wie viele Kombinationen an Basen gibt es in der Aminosäure?

Antwort anzeigen

Antwort

  • Da vier verschiedene Basen in der DNA vorkommen (Adenin, Thymin, Guanin und Cytosin), ergeben sich somit 64 verschiedene Kombinationsmöglichkeiten
Frage anzeigen

Frage

Was sind Stoppcodons?

Antwort anzeigen

Antwort

Drei der Codons sind sogenannte Stoppcodons: Sie codieren für keine Aminosäure, sondern bilden ein Signal für das Ende der Translation

Frage anzeigen

Frage

Was machen die restlichen 61 Codons?

Antwort anzeigen

Antwort

  • Die restlichen 61 Codons codieren für die 20 verschiedenen Aminosäuren
  • Fast jede Aminosäure wird also von mehr als einem Codon codiert, der genetische Code ist degeneriert
Frage anzeigen

Frage

Was machen die Startcodons AUG und GUG?

Antwort anzeigen

Antwort

sie markieren den Beginn der Translation und codieren für die Aminosäuren Methionin (AUG) und Valin (GUG).

Frage anzeigen

Frage

Wie ist der genetische Code aufgebaut?

Antwort anzeigen

Antwort

  • Zwischen Start- und Stoppcodon reihen sich Codons direkt aneinander, der genetische Code ist kommafrei
  • Das bedeutet, dass es keine Zeichen gibt, die Codons voneinander trennen
  • Da es auch keine Überlappungen zwischen Codons gibt, ist dies nicht nötig; Die Codons 1-3 codieren für die erste Aminosäure des Proteins, die Codons 4-6 für die nächste, und so weiter
  • Außerdem ist der genetische Code universell
  • Das bedeutet, dass jedes Codon bei allen Lebewesen für die gleiche Aminosäure codiert (bis auf wenige Ausnahmen)
Frage anzeigen

Frage

Was wird Codestrang genannt?

Antwort anzeigen

Antwort

  • Zuerst findet die Transkription statt. Die Basensequenz der DNA wird auf ihre Transportform, die mRNA, umgeschrieben
  • Dabei entsteht ein RNA-Einzelstrang, dessen Basensequenz komplementär zu der des codogenen Strangs der DNA ist
  • Das heißt, dass die Basensequenz der mRNA der Basensequenz des anderen DNA-Strangs entspricht. Dieser Strang wird Codestrang genannt
Frage anzeigen

Frage

Was zeigt die Codesonne?

Antwort anzeigen

Antwort

  • Die Basensequenz der mRNA wird schließlich durch Translation in die Aminosäuresequenz eines Proteins übersetzt
  • Die Codesonne zeigt uns, für welche Aminosäure ein bestimmtes Basentriplett codiert
Frage anzeigen

Frage

Wie liest man eine Codesonne?

Antwort anzeigen

Antwort

  • Die Codesonne ist von innen nach außen zu lesen
  • Da die Translation immer in 5‘ 🡪 3‘-Richtung stattfindet, ist die Codesonne von innen nach außen ebenfalls in 5‘ 🡪 3‘-Richtung dargestellt
  • Anhand der Codesonne kannst du einfach überprüfen, für welche Aminosäure ein bestimmtes Codon codiert
  • Auch Start- und Stoppcodons sind in der Codesonne dargestellt
Frage anzeigen

Frage

Aus was besteht der genetische Code?

Antwort anzeigen

Antwort

Der genetische Code besteht aus spezifischen, aufeinanderfolgenden Nukleotiden in der DNA.

Frage anzeigen

Frage

Warum ist der genetische Code so wichtig?

Antwort anzeigen

Antwort

Er ist für die Herstellung der Proteine verantwortlich, welche hingegen an wichtigen Prozessen, z.B. der Aufbau von Körperteilen wie Haaren, Federn, Muskelfasern, Blutkörperchen oder Sehnen, beteiligt sind. Dadurch wird so wohl der Phänotyp von Lebewesen als auch der Zellstoffwechsel kontrolliert.

Frage anzeigen

Frage

Wie führt der genetische Code zur Herstellung von Proteinen?

Antwort anzeigen

Antwort

Bei der ersten Phase der Proteinbiosynthese, also der Transkription, wird zunächst eine Kopie von einem Teil der DNA angefertigt. Diese Kopie nennt man messenger-RNA (mRNA). Mithilfe der mRNA wird dann während der Translation der genetische Code Codon für Codon abgelesen und entschlüsselt. Anschließend entsteht eine Kette von Aminosäuren, die schlussendlich das benötigte Protein bildet.

Frage anzeigen

Frage

Was ist ein Codon?

Antwort anzeigen

Antwort

Ein Basentriplett (also eine Kombination bestehend aus drei Basen) bezeichnet man auch als Codon.

Frage anzeigen

Frage

Wie viele verschiedene Codons gibt es?

Antwort anzeigen

Antwort

Es gibt 64 mögliche Kombinationsmöglichkeiten von Basentripletts, somit 64 verschiedene Codons.

Frage anzeigen

Frage

Wie viele Codons codieren wie viele Aminosäuren?

Antwort anzeigen

Antwort

Es gibt 20 verschiedene Aminosäuren. Diese werden von 61 Codons abgedeckt, somit gibt es bei den allermeisten Aminosäuren mehrere Codons, die zu ihnen führen.

Frage anzeigen

Frage

Was sind die drei Codons, die keine Aminosäuren codieren?

Antwort anzeigen

Antwort

Die drei restlichen Codons werden als Stoppcodons bezeichnet. Sie bezeichnen den Punkt, an dem die Translation abgebrochen werden soll und die Aminosäurenkette vollendet wird.

Frage anzeigen

Frage

Was ist das wichtigste Startcodon?

Antwort anzeigen

Antwort

Das wichtigste Startcodon ist das Triplett AUG, das auch für die Codierung von Methionin zuständig ist.

Frage anzeigen

Frage

Mit was kann abgelesen werden, welches Codon welche Aminosäure codiert?

Antwort anzeigen

Antwort

Codons können mithilfe der Codesonne in die entsprechenden Aminosäuren "übersetzt" werden.

Frage anzeigen

Frage

Mit was kann abgelesen werden, welches Codon welche Aminosäure codiert?

Antwort anzeigen

Antwort

Codons können mithilfe der Codesonne in die entsprechenden Aminosäuren "übersetzt" werden.

Frage anzeigen

Frage

Was sind die beiden wichtigsten Eigenschaften des genetischen Codes?

Antwort anzeigen

Antwort

Der genetische Code ist universell und redundant, bzw. degeneriert.

Frage anzeigen

Frage

Warum ist der genetische Code universell?

Antwort anzeigen

Antwort

So gut wie überall ist der genetische Code gleich: Codons von Bakterien bis zu Menschen codieren die gleichen Aminosäuren. Es gibt nur ganz wenige Ausnahmen, in denen das nicht so ist, z.B. bei Mitochondrien. Aufgrund dieser Tatsache wird der genetische Code universell genannt. Das ist besonders für die Gentechnik sehr nützlich.

Frage anzeigen

Frage

Warum ist der genetische Code redundant bzw. degeneriert?

Antwort anzeigen

Antwort

Im Allgemeinen kannst du dir immer merken: Ein Basentriplett steht immer nur für eine Aminosäure. aber eine Aminosäure steht nicht nur für ein Basentriplett! Da es 64 verschiedene Kombinationsmöglichkeiten für Codons gibt, aber nur 20 Aminosäuren, ist es unvermeidbar, dass verschiedene Codons die gleiche Aminosäure bilden. Daher wird der genetische Code als redundant oder degeneriert bezeichnet.

Frage anzeigen

Frage

Welchen Vorteil hat es, dass mehrere Codons die gleiche Aminosäure codieren?

Antwort anzeigen

Antwort

Dass mehrere Codons die gleiche Aminosäure codieren, ist ziemlich praktisch. So kann es nämlich vorkommen, dass Punktmutationen gar keine Wirkung aufweisen (auch stumme Mutation genannt), wenn die Base so ersetzt wird, dass es trotzdem zur Bildung der gleichen Aminosäure kommt.

Frage anzeigen

Frage

An welcher Stelle eines Basentripletts kann eine Punktmutation den größten Schaden ausrichten?

Antwort anzeigen

Antwort

Die Veränderung der ersten Base ist meistens am schwersten, denn die erste Base gibt die Art der Ladung der Aminosäure an. Wird die Ladung umgekehrt, so hat dies schwerwiegendere Folgen für die Funktion des Proteins.

Frage anzeigen
Mehr zum Thema Genetik
60%

der Nutzer schaffen das Genetischer Code Quiz nicht! Kannst du es schaffen?

Quiz starten

Finde passende Lernmaterialien für deine Fächer

Alles was du für deinen Lernerfolg brauchst - in einer App!

Lernplan

Sei rechtzeitig vorbereitet für deine Prüfungen.

Quizzes

Teste dein Wissen mit spielerischen Quizzes.

Karteikarten

Erstelle und finde Karteikarten in Rekordzeit.

Notizen

Erstelle die schönsten Notizen schneller als je zuvor.

Lern-Sets

Hab all deine Lermaterialien an einem Ort.

Dokumente

Lade unzählige Dokumente hoch und habe sie immer dabei.

Lern Statistiken

Kenne deine Schwächen und Stärken.

Wöchentliche

Ziele Setze dir individuelle Ziele und sammle Punkte.

Smart Reminders

Nie wieder prokrastinieren mit unseren Lernerinnerungen.

Trophäen

Sammle Punkte und erreiche neue Levels beim Lernen.

Magic Marker

Lass dir Karteikarten automatisch erstellen.

Smartes Formatieren

Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.

Melde dich an für Notizen & Bearbeitung. 100% for free.