StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
Americas
Europe
In diesem Artikel wirst du lernen, was heterozygot bedeutet, wobei spezifische Beispiele dazu beitragen, das Konzept zu veranschaulichen. Zudem werden die Mechanismen von Heterozygot-Krankheiten erörtert, um das Verständnis der Rolle der Heterozygot Genotypen bei der Vererbung von Krankheiten zu vertiefen. Schließlich wird auf die Beziehung zwischen Genotyp und Phänotyp eingegangen, um zu vermitteln, wie Heterozygotie das Erscheinungsbild beeinflusst. In der Biologie…
Entdecke über 200 Millionen kostenlose Materialien in unserer App
Speicher die Erklärung jetzt ab und lies sie, wenn Du Zeit hast.
SpeichernLerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmeldenIn diesem Artikel wirst du lernen, was heterozygot bedeutet, wobei spezifische Beispiele dazu beitragen, das Konzept zu veranschaulichen. Zudem werden die Mechanismen von Heterozygot-Krankheiten erörtert, um das Verständnis der Rolle der Heterozygot Genotypen bei der Vererbung von Krankheiten zu vertiefen. Schließlich wird auf die Beziehung zwischen Genotyp und Phänotyp eingegangen, um zu vermitteln, wie Heterozygotie das Erscheinungsbild beeinflusst.
In der Biologie wird der Begriff "heterozygot" verwendet, um einen Organismus zu beschreiben, der zwei unterschiedliche Versionen, auch Allele genannt, eines bestimmten Gens besitzt. Dieses Phänomen ist eine Folge der sexuellen Fortpflanzung, durch die jedes Lebewesen eine einzigartige Mischung von Genen erhält - jeweils die Hälfte von jedem Elternteil. Der Heterozygoten-Zustand ist daher in der Natur äußerst verbreitet.
Heterozygotie ist ein Schlüsselfaktor für genetische Vielfalt und Evolution. Sie ermöglicht es, dass Genvarianten (Allele), die in einer Generation schädlich oder neutral sein können, in der folgenden Generation vorteilhaft werden, wenn sich die Umweltbedingungen ändern.
Die Genetik, als Wissenschaft von der Vererbung und Variation von Eigenschaften, nutzt das Konzept der Heterozygotie, um zu erklären, wie diese Eigenschaften von Generation zu Generation weitergegeben werden. Jedes Individuum trägt zwei Kopien jedes Gens - eine von jedem Elternteil. Wenn beide Kopien identisch sind, wird das Individuum als homozygot bezeichnet. Sind die Kopien unterschiedlich, ist das Individuum heterozygot.
Ein klassisches Beispiel für diesen Heterozygotenvorteil findet sich bei der Sichelzellenanämie, einer genetischen Erkrankung. Individuen, die das Sichelzell-Gen in heterozygoter Form tragen, ohne die Krankheit selbst zu haben, haben einen Überlebensvorteil in Gebieten, in denen Malaria verbreitet ist, da ihre Zellen resistenter gegen den Malaria-Erreger sind.
Individuum | Gen-Kopie 1 | Gen-Kopie 2 | Zustand |
A | Allel X | Allel X | Homozygot |
B | Allel X | Allel Y | Heterozygot |
C | Allel Y | Allel Y | Homozygot |
Ein realistischeres Beispiel könnte das Fellfarben-Allel bei Kaninchen beleuchten. Wenn du das Gen für Schwarzes Fell (B) vom Vater und das für weißes Fell (b) von der Mutter erhältst, bist du heterozygot (Bb). Deine Fellfarbe hängt dann von der Dominanz der Allele ab. Wenn Schwarz (B) dominant ist, hättest du schwarzes Fell, obwohl du auch das weiße Allel trägst.
Noch mehr spannende Infos findest du in der Erklärung "Mendelsche Regeln".
Wir wissen bereits, dass jedes Individuum zwei Kopien jedes Gens trägt - eine von jedem Elternteil. Weiter wissen wir, dass diese Kopien als Allele bezeichnet werden und unterschiedlich sein können. Aber wie beeinflussen diese Allele die Merkmale eines Individuums? Das hängt von der Dominanz und Rezessivität der Allele ab.
Im Fall von heterozygoten Individuen, also wenn die beiden Allele unterschiedlich sind, sagt die Dominanz- und Rezessivitätstheorie voraus, dass das dominante Allel "die Oberhand gewinnt" und das rezessive Allel "unterdrückt" wird. Dies führt dazu, dass das Merkmal, das durch das dominante Allel repräsentiert wird, in dem Individuum zum Ausdruck kommt.
Ein gutes Beispiel für dominante und rezessive Traits ist die Farbblindheit. Das Gen, das für die Farbwahrnehmung verantwortlich ist, befindet sich auf dem X-Chromosom. Männer haben nur ein X-Chromosom, also wenn sie das defekte Gen (das für die Farbblindheit verantwortlich ist) von ihrer Mutter erben, werden sie farbenblind sein. Frauen hingegen haben zwei X-Chromosomen. Wenn sie nur eine defekte Kopie erben, sind sie Trägerinnen, aber nicht farbenblind, da das normale Gen auf dem anderen X-Chromosom dominant ist und die Farbwahrnehmung normal bleibt. Hier zeigt sich die Dominanz des normalen Gens über das defekte Gen.
Ein klassisches Beispiel für Mischerbigkeit findet sich in der Fellfarbe von Kaninchen. Wenn ein Kaninchen mit rein schwarzem Fell (BB) und ein Kaninchen mit rein weißem Fell (WW) gepaart werden, wird der Nachwuchs nicht, wie vielleicht erwartet, grau. Stattdessen weisen die Jungtiere eine scheckige Fellfärbung auf, als Mischung aus schwarzen und weißen Fellbereichen. Das Ergebnis dieser Paarung ist ein Heterozygot Mischerbiges Kaninchen (BW).
Klick dich auch in die Erklärungen "autosomal rezessive Erbkrankheiten" und "autosomal dominante Erbkrankheiten" rein.
Sichelzellanämie ist eine genetische Störung, die die roten Blutkörperchen betrifft. Personen, die an Sichelzellanämie leiden, haben rote Blutkörperchen, die eine abnorme, sichelförmige Form annehmen können. Diese Form kann dazu führen, dass die Blutzellen verklumpen und die Blutgefäße verstopfen, was eine Reihe von medizinischen Problemen verursacht. Die Krankheit wird durch ein defektes Gen verursacht, das für die Herstellung von Hämoglobin verantwortlich ist, einem Protein, das Sauerstoff in den roten Blutkörperchen trägt. Sichelzellanämie ist ein Beispiel für eine rezessive Krankheit, das bedeutet, dass eine Person sowohl von der Mutter als auch vom Vater eine Kopie des defekten Gens erben muss, um die Krankheit zu entwickeln.
Eine Person, die nur eine Kopie des defekten Gens erbt, ist heterozygot für Sichelzellanämie. Solche Personen werden als Träger bezeichnet und entwickeln die Krankheit normalerweise nicht. Allerdings können sie das fehlerhafte Gen an ihre Nachkommen weitergeben.
Angenommen, ein Individuum mit den Allelen "AA" ist gesund und ein Individuum mit den Allelen "aa" hat Sichelzellanämie. Ein heterozygotes Individuum "Aa" ist ein Träger der Krankheit, zeigt aber selbst keine Symptome. Bei jeder Fortpflanzung besteht eine 50%ige Chance, dass das kranke "a" an die nächste Generation weitergegeben wird. Dieses einfache Modell zeigt, wie diese genetische Krankheit von Generation zu Generation weitergegeben werden kann.
Krankheit | Vererbungsart | Heterozygot Zustand |
Sichelzellenanämie | Rezessiv | Träger, normalerweise gesund |
Zystische Fibrose | Rezessiv | Träger, normalerweise gesund |
Jagdtons Krankheit | Dominant | Krank |
Wie möchtest du den Inhalt lernen?
Wie möchtest du den Inhalt lernen?
Kostenloser biologie Spickzettel
Alles was du zu . wissen musst. Perfekt zusammengefasst, sodass du es dir leicht merken kannst!
Sei rechtzeitig vorbereitet für deine Prüfungen.
Teste dein Wissen mit spielerischen Quizzes.
Erstelle und finde Karteikarten in Rekordzeit.
Erstelle die schönsten Notizen schneller als je zuvor.
Hab all deine Lermaterialien an einem Ort.
Lade unzählige Dokumente hoch und habe sie immer dabei.
Kenne deine Schwächen und Stärken.
Ziele Setze dir individuelle Ziele und sammle Punkte.
Nie wieder prokrastinieren mit unseren Lernerinnerungen.
Sammle Punkte und erreiche neue Levels beim Lernen.
Lass dir Karteikarten automatisch erstellen.
Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.
Melde dich an für Notizen & Bearbeitung. 100% for free.
Speichere Erklärungen in deinem persönlichen Bereich und greife jederzeit und überall auf sie zu!
Mit E-Mail registrieren Mit Apple registrierenDurch deine Registrierung stimmst du den AGBs und der Datenschutzerklärung von StudySmarter zu.
Du hast schon einen Account? Anmelden