StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
Americas
Europe
Im Alltag begegnet dir oft Synthesekautschuk - sei es in Form von Reifen, Schwämmen oder Matratzen. Butylkautschuk ist dabei ein Synthesekautschuk, der besonders oft verwendet wird. Butylkautschuk ist ein Vertreter der Copolymere. Copolymere sind Kunststoffe, die aus mehreren verschiedenen Arten von Monomeren bestehen. Doch was sind Copolymere? Diese Frage wird dir im folgenden Artikel beantwortet.Ein Polymer, das zwei oder mehr…
Entdecke über 200 Millionen kostenlose Materialien in unserer App
Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmeldenIm Alltag begegnet dir oft Synthesekautschuk - sei es in Form von Reifen, Schwämmen oder Matratzen. Butylkautschuk ist dabei ein Synthesekautschuk, der besonders oft verwendet wird. Butylkautschuk ist ein Vertreter der Copolymere. Copolymere sind Kunststoffe, die aus mehreren verschiedenen Arten von Monomeren bestehen. Doch was sind Copolymere? Diese Frage wird dir im folgenden Artikel beantwortet.
Ein Polymer, das zwei oder mehr verschiedene Monomer-Arten enthält, wird in der Chemie als Copolymer bezeichnet.
Ein Copolymer ist ein spezielles Polymer, da mehrere unterschiedliche Arten an Monomeren in diesem Polymer enthalten sind. Copolymere sind hauptsächlich Kunststoffe.
Abbildung 1: Molekülkette eines Polymers
Copolymere werden auch Heteropolymere genannt. Mischpolymerisation oder der englische Ausdruck interpolymerization sind weiter geläufige Namen.
Die Eigenschaften von Copolymeren sind sehr unterschiedlich. Denn diese ergeben sich aus den eingesetzten Monomeren und deren Verhältnis zueinander. Zudem beeinflusst der Aufbau der Copolymer-Kette die Eigenschaften des Copolymers.
Anhand des Copolymers aus Polystyrol und Butadien kannst du diesen Zusammenhang besser verstehen. Polystyrol ist als Homopolymer ein spröder Kunststoff. In Verbindung mit Butadien formt sich ein elastisches Material. Ein weiteres Beispiel ist das Ethylen-Propylen-Copolymer. Die Homopolymere der jeweiligen Monomere Ethen und Propen haben thermoplastische Eigenschaften. Das Copolymer aus Ethen und Propen jedoch ist ein Elastomer.
Thermoplaste sind Polymere, die bei gewissen Temperaturen verformbar sind. Lineare Polymerketten ermöglichen diese Formbarkeit.
Elastomere sind Polymere, die eine feste Form besitzen, aber unter Druck und Zugkräften verformbar sind. Elastomere bestehen aus langen Polymerketten, die vernetzt sind.
Die oben genannten Parameter werden genutzt, um Kunststoffe mit bestimmten, erwünschten Eigenschaften zu erzeugen. Bei einfachen Polymeren, also Homopolymeren, sind die Mittel begrenzt, um Einfluss auf die Eigenschaften von Polymeren zu nehmen. Durch die Heteropolymerisation stehen mehr Instrumente zum Erzielen von bestimmten Eigenschaften zur Verfügung.
Gerrit ten Brinke ist ein Wissenschaftler an der Universiät Groningen und forscht auf dem Themengebiet der Polymere und Copolymere. Seine Erkenntnisse sind unter anderem in "Phase behavior in copolymer blends" aus dem Jahr 1983 nachzulesen.
Brinke entwickelte zudem das sogenannte Schubert-Plot, welches den Zusammenhang von Parametern in einem Gemisch von mehreren Monomeren grafisch darstellt.
Die Einteilung der Copolymere erfolgt in der Chemie anhand des Aufbaus der verschiedenen Monomere im Molekül. Es wird unterschieden je nachdem, wie die Comonomere in das Copolymer eingebaut sind. Zunächst beschränkt sich die Einteilung auf Copolymere aus zwei Monomeren.
Bei statistischen Copolymeren sind die beiden Monomere zufällig in das Copolymer eingebaut. Sie werden als statistische Copolymere bezeichnet, da der Struktur der Monomere einer statistischen Verteilung folgt. Die Anordnung der Monomere in der Copolymer-Kette ist wahllos.
Copolymerkette aus Monomer A und Monomer B:
Abbildung 2: Allgemeine Struktur eines statistischen Copolymers
Beim Verknüpfen der beiden Monomere gibt es keine Präferenz. Hierfür liegen sterische, elektronische und reaktive Gründe vor.
Wenn kleine Mengen eines zweiten Monomers in die Kette eines bestehenden Monomers eingebaut werden, können bestimmte Eigenschaften selektiv beeinflusst werden. Die Einarbeitung größerer Mengen eines anderen Monomers hat hauptsächlich Einfluss auf die thermischen Eigenschaften.
Alternierende Copolymere heißen auch abwechselnde Copolymere. In alternierenden Copolymere sind zwei Monomere regelmäßig angeordnet. Die Monomere A und B wechseln sich ab.
Copolymerkette aus Monomer A und Monomer B:
Abbildung 3: Allgemeine Struktur eines alternierenden Copolymers
Bei Blockcopolymeren gibt es innerhalb der Copolymer-Kette längere Abschnitte aus je einem der beiden Monomeren. Die Monomere bilden jeweils einen Block, einen Homopolymerblock.
Es können auch mehrere Blöcke in einer Copolymer-Kette vorkommen. Die Bezeichnung erfolgt dann, je nachdem wie viele Blöcke im Copolymer existieren. Beispiele sind Diblock- und Triblockcopolymere.
Copolymerkette aus Monomer A und Monomer B:
Abbildung 4: Allgemeine Struktur eines Blockpolymers
Das Pfropfcopolymer wird im Englischen als graft copolymer bezeichnet.
Bei einem Pfropfcopolymer gibt es einen Block aus einem der beiden Monomere. Dieser Abschnitt stellt das Rückgrat dar. Auf dieses Rückgrat werden Blöcke des anderen Monomers aufgesetzt. Es wird auch von "aufpfropfen" gesprochen.
Somit sind Pfropfpolymere verzweigte Polymere, da sie Seitenketten besitzen. Die Zusammenstellung, die Menge und die Länge der Seitenketten bestimmen die Eigenschaften der Copolymere mit.
Copolymerkette aus Monomer A und Monomer B:
Abbildung 5: Allgemeine Strukur eines Pfropfcopolymers
Terpolymere sind Copolymere, die aus drei verschiedenen Monomeren bestehen.
Copolymerkette aus Monomer A, Monomer B und Monomer C:
Abbildung 6: Beispielhafte Struktur eines Terpolymers
Die oben genannte Einteilung in statistische und alternierende Copolymere sowie Block- und Pfropfcopolymer kannst du auf Copolymere aus drei unterschiedlichen Monomeren übertragen.
Zur Herstellung von Copolymeren werden die radikalische Polymerisation und die ionische Polymerisation eingesetzt. Besonders die anionische Polymerisation eignet sich, um bestimmte Strukturen herzustellen. Denn die entstehende Molmasse und deren Verteilung lässt sich bei der anionischen Polymerisation gut steuern. Vor allem bei der Darstellung von Blockpolymeren wird das ausgenutzt.
Pfropfpolymere können durch unterschiedliche Wege dargestellt werden. Eine Variante ist, dass an eine Polymerkette aus Monomer A andere Monomere B polymerisiert werden. Das Verbinden zweier Ketten von Homopolymeren mittels funktioneller Gruppen ist eine zweite Möglichkeit.
Es gibt viele verschiedene Copolymere. Im Folgenden sollen einige Kunststoffe vorgestellt werden.
Polyacrylate sind Polymere, die aus den Estern der Acrylsäure aufgebaut sind. Der Einsatz von Acrylsäureester in Copolymeren ist weitverbreitet. Ein Beispiel ist das Copolymer aus Acrylsäureester und dem Ester der Methacrylsäure. Die Eigenschaften der Copolymere mit Acrylsäureestern lassen sich sehr stark variieren.
Abbildung 7: Allgemeine Strukturformel von Acrylsäureester
In der oben sichtbaren Abbildung siehst du die allgemeine Strukturformel eines Acrylsäureesters. Das R in der Strukturformel ist ein organischer Rest, der variiert.
Acrylnitril-Styrol-Acrylat-Copolymer (ASA) ist ein Beispiel für ein Polyacrylat. ASA ist ein Terpolymer aus den Monomeren Acrylnitril, Styrol und Acrylsäureester. Aus diesem Terpolymer werden Oberflächen hergestellt, die glänzend und beständig gegenüber Kratzern sind. Es weist eine gute chemische Beständigkeit auf, besonders gegenüber wässrigen Lösungen, aber auch gegen Öle, Alkoholen und aliphatischen Kohlenwasserstoffen.
Acrylnitiril-Styrol-Acrylat-Copolymere werden bei Platten im Bauwesen, die witterungsfest sind, eingesetzt. Weitere Einsatzgebiete sind elektrische Geräte, die hohen Temperaturen ausgesetzt sind, und Surfbretter.
Butylkautschuk ist ein Copolymer aus den Monomeren Isobuten und Isopren. Er wird auch Isobuten-Isopren-Kautschuk (IIR) genannt und ist ein Synthesekautschuk. Das Copolymer hat eine gute Beständigkeit gegenüber Säuren, Basen, Wetter und Ozon. Zudem isoliert es elektrisch recht gut. Die Gasdurchlässigkeit ist gering und Stöße sowie Schwingungen werden gut abgefangen.
Abbildung 8: Synthesekautschuk wird unter anderem in Reifen verwendet
Styrol-Acetonitril-Copolymer (SAN) ist ein transparentes Copolymer aus den Monomeren Styrol und Acetonitril. Der Kunststoff ist recht steif. Gegenüber Polystyrol, einem Homopolymer, hat SAN einen Vorteil. Denn dieses Copolymer hat eine gute Beständigkeit gegenüber Wärme, Kratzern und chemischen Substanzen, wie Aminen. In vielen Produkte in der Küche, Duschkabinenwände, Reflektoren, Batteriezellwände und vieles wird SAN verwendet.
Weitere Beispiele für Copolymere sind Poloxamere, Acetonitril-Butadien-Styrol-Copolymer und Styrol-Butadien-Kautschuk.
Copolymere werden genutzt, um die Eigenschaften von Kunststoffen besser beeinflussen zu können. Durch die Heteropolymerisation stehen mehr Instrumente zum Erzielen von bestimmten Eigenschaften zur Verfügung.
Es gibt statistische und alternierende sowie Block- und Pfropfpolymere. Diese Einteilung kann sowohl für Copolymere aus zwei verschiedenen Monomeren, als auch für Terpolymere erfolgen.
Eine Copolymerisatation ist dadurch gekennzeichnet, dass zwei oder mehr verschiedene Monomere ein Copolymere bilden. Somit gibt es bei der Copolymerisation mehrere Edukte.
Eine Monomereinheit ist ein Monomer, welches in einem Polymer eingebaut ist. Copolymere bestehen beispielsweise aus zwei verschiedenen Monomereinheiten.
Wie möchtest du den Inhalt lernen?
94% der StudySmarter Nutzer erzielen bessere Noten.
Jetzt anmelden94% der StudySmarter Nutzer erzielen bessere Noten.
Jetzt anmeldenWie möchtest du den Inhalt lernen?
Kostenloser chemie Spickzettel
Alles was du zu . wissen musst. Perfekt zusammengefasst, sodass du es dir leicht merken kannst!
Sei rechtzeitig vorbereitet für deine Prüfungen.
Teste dein Wissen mit spielerischen Quizzes.
Erstelle und finde Karteikarten in Rekordzeit.
Erstelle die schönsten Notizen schneller als je zuvor.
Hab all deine Lermaterialien an einem Ort.
Lade unzählige Dokumente hoch und habe sie immer dabei.
Kenne deine Schwächen und Stärken.
Ziele Setze dir individuelle Ziele und sammle Punkte.
Nie wieder prokrastinieren mit unseren Lernerinnerungen.
Sammle Punkte und erreiche neue Levels beim Lernen.
Lass dir Karteikarten automatisch erstellen.
Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.
Melde dich an für Notizen & Bearbeitung. 100% for free.