• :00Tage
  • :00Std
  • :00Min
  • 00Sek
Ein neues Zeitalter des Lernens steht bevorKostenlos anmelden
Login Anmelden

Select your language

Suggested languages for you:
StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
|
|

Statistik

Statistiken werden in der Wirtschaft, in der Forschung und sogar in der Schule genutzt, um Daten darzustellen und auszuwerten.Der Notenspiegel, den Deine Lehrer nach einer Probe aufschreiben, ist ein einfaches Beispiel für eine Statistik aus der Mathematik.In dieser Erklärung geht es zunächst um die Grundlagen der Statistik, Formeln der Statistik und entsprechende Beispiele.Da es sich bei der Statistik um ein großes Thema…

Von Expert*innen geprüfte Inhalte
Kostenlose StudySmarter App mit über 20 Millionen Studierenden
Mockup Schule

Entdecke über 200 Millionen kostenlose Materialien in unserer App

Statistik

Statistik
Illustration

Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken

Jetzt kostenlos anmelden

Nie wieder prokastinieren mit unseren Lernerinnerungen.

Jetzt kostenlos anmelden
Illustration

Statistiken werden in der Wirtschaft, in der Forschung und sogar in der Schule genutzt, um Daten darzustellen und auszuwerten.

Der Notenspiegel, den Deine Lehrer nach einer Probe aufschreiben, ist ein einfaches Beispiel für eine Statistik aus der Mathematik.

In dieser Erklärung geht es zunächst um die Grundlagen der Statistik, Formeln der Statistik und entsprechende Beispiele.

Statistik – Grundlagen

Da es sich bei der Statistik um ein großes Thema handelt, sind auch viele Begriffe und Formeln für das volle Verständnis nötig. In diesem Abschnitt findest Du deshalb zuerst eine Übersicht der wichtigsten Grundlagen.

Statistik Definition

Die Statistik kann folgendermaßen definiert werden.

Bei der Statistik handelt es sich um die Sammlung, Zusammenfassung, Analyse und Darstellung von Daten.

Dazu zählen auch die Methoden, die bei Ungewissheit vernünftige Entscheidungen ermöglichen.

Die Statistik kann etwa die Zahl der Angestellten eines Unternehmens innerhalb eines gewissen Zeitraumes darstellen.

Das Unternehmen A möchte einen Überblick darüber erhalten, wie sich Ihre Mitarbeiteranzahl seit der Gründung im Jahr 1990 entwickelt hat.

Dafür suchen sie alle Ihre Aufzeichnungen aus den letzten Jahren über die Mitarbeiterzahl raus (Sammlung) und fassen die Zahlen in Fünferschritten zusammen. (Zusammenfassung). Diese Ergebnisse schreiben sie anschließend in eine Tabelle (Darstellung):

Jahr1990199520002005201020152020
Anzahl an Mitarbeitern\[10\]\[200\]\[2000\]\[5 000\]\[10 000\]\[30 000\]\[35 000\]

Als sie betrachten, um wie viel Prozent die Anzahl pro Sprung wächst, kommen sie zu dem Schluss, dass Ihre Mitarbeiterzahl im Verhältnis zum Gründungsjahr weniger schnell wächst. (Analyse)

Statistik lernen

Ein paar statistische Begriffe sollten Dir bekannt sein:
BegriffErklärungBeispiel
GrundgesamtheitDie Grundgesamtheit umfasst alle Objekte, über die Informationen ermittelt werden sollen.Bei einem Notenspiegel einer Klausur ist die Grundgesamtheit alle die gesamte Klasse.
StichprobeEine Stichprobe ist eine Teilmenge der Grundgesamtheit, die trotzdem die Eigenschaften der Grundgesamtheit widerspiegelt.Nur die Hälfte aller Schüler schreiben die Klausur, aber deren Notenspiegel wird auf die gesamte Klasse bezogen, die Hälfte der Schüler, die an der Klausur teilgenommen haben, sind eine Stichprobe für die ganze Klasse.
MerkmalsträgerEin Merkmalsträger ist ein Objekt der Grundgesamtheit.In dieser Klasse ist ein Schüler ein Merkmalsträger.
Merkmal/ VariablenMerkmale sind Eigenschaften, nach denen bei den Merkmalsträgern in der Statistik gefragt wird.Die Note eines Schülers ist in diesem Fall ein Merkmal.
AusprägungEine mögliche Variante des Merkmals.Welche Note ein Schüler erreicht hat, ist eine Ausprägung.
WertebereichMenge aller möglichem Ausprägungen.Wenn ein Schüler nach seiner Note gefragt wird, sind die Noten Eins bis sechs der Wertebereich.

Statistik Formeln

In der folgenden Tabelle findest Du eine kleine Sammlung von Formeln, die Dir in der Statistik immer wieder begegnen werden.


WertFormelAnmerkung
Mittelwert\[\mu=\frac{\text{Summe aller Werte}}{\text{Anzahl aller Werte}}\]
Medianungerade Anzahl Messwerte\[x_{\text{med}}=x_{\frac{n+1}{2}}\]Kann nur bei ordinalen und kardinalen Skalenniveaus angewendet werden.\(n\) : Anzahl and Ausprägungen\(x_{med}\) : Median\(x\) : Ergebnis
gerade Anzahl Messwerte\[x_{\text{med}}=\frac{1}{2} \cdot (x_{\frac{n}{2}}+x_{\frac{n}{2}+1})\]
Varianz\[\sigma^2=\sum_{i=1}^n(x_i-\mu)^2\cdot p_i\]\(p_i\) : Wahrscheinlichkeit, dass \(x_i\) eintritt
Standardabweichung
\[\sigma=\sqrt{\text{Varianz}}=\sqrt{\sum_{i=1}^n(x_i-\mu)^2\cdot p_i} \]
Spannweite\[R=x_{\text{max}}-x_{\text{min}}\]\(x_{\text{max}}\) : Größter Wert\(x_{\text{min}}\) : kleinster Wert
Variationskoeffizient\[V=\frac{\sigma}{\mu}\]

Statistik – Mathematik

In der Mathematik wird die Statistik in zwei große Teilbereiche geteilt. Die deskriptive und die beurteilende Statistik.

Deskriptive Statistik – einfach erklärt

Die Deskriptive Statistik, auch beschreibende Statistik genannt, behandelt die Sammlung, Zusammenfassung, Analyse und Darstellung von Daten. Das Ziel der deskriptiven Statistik ist es, einen Überblick über den vorliegenden Datensatz zu geben.

Dabei werden die Daten geordnet und systematisch zusammengefasst. Zur Ordnung von Daten können Tabellen und Diagramme verwendet werden.

Die Analyse von Daten geschieht häufig auf Basis von berechneten Lagemaßen oder Streuungsmaßen.

Statistik Deskriptive Statistik StudySmarterAbbildung 1: Deskriptive Statistik

Neben den vielen möglichen Methoden der deskriptiven Statistik gibt es zwei weitere Formen Datensätze zu beschreiben.

Das Skalen- oder Messniveau einer Variablen klassifizieren ihren Aussagegehalt in etwa einer Studie. Unterschieden wird zwischen den drei Skalenniveaus Nominalskala, Ordinalskala und metrischer Skala.

Alle drei Skalenniveaus haben verschiedene Eigenschaften, mithilfe welcher Du die Variablen in die verschiedenen Skalenniveaus einordnen kannst.

Mehr zu den Messniveaus findest Du in der Erklärung Skalenniveau oder Deskriptive Statistik.

Beurteilende Statistik – Zusammenfassung

Die beurteilende Statistik, auch induktive Statistik genannt, stellt die Methoden, die bei Ungewissheit vernünftige Entscheidungen ermöglichen, bereit.

Für diese Methoden wird vor allem die Wahrscheinlichkeitsrechnung verwendet. Wenn die verwendete Stichprobe repräsentativ für die Grundgesamtheit ist, können von der Stichprobe Rückschlüsse auf die Grundgesamtheit gezogen werden.

Statistik Beurteilende Statistik StudySmarterAbbildung 2: Beurteilende Statistik

Dieser Schluss von der Stichprobe auf die Grundgesamtheit wird Repräsentationsschluss genannt.

Das Ziel des Repräsentationsschlusses ist es, aus den erhobenen Daten einer Stichprobe auf die tatsächlichen Verhältnisse in der Grundgesamtheit zu schließen.

Da der Schluss von der Stichprobe auf die Grundgesamtheit repräsentativ sein soll, wird er Repräsentationsschluss genannt.

Ob dieser Repräsentationsschluss auch wirklich repräsentativ ist, lässt sich mit dem Hypothesentest überprüfen.

Bei dem Hypothesentest werden die Schlussfolgerung aus der Stichprobe, Nullhypothese, und ihr Gegenereignis, die Alternativhypothese, untersucht. Die Frage, welcher der beiden Hypothesen am glaubwürdigsten ist, wird durch die Binomialverteilung beantwortet.

Wie hoch die Wahrscheinlichkeit ist, dass Du Dich bei diesem Hypothesentest irrst, wird mit den Fehlerarten beschreiben.

Der Fehler 1. Art wird begangen, wenn die Nullhypothese zwar in Wirklichkeit zutrifft, diese aber aufgrund der Informationen aus dem Datensatz fälschlicherweise verworfen wird.

Der Fehler 2. Art wird begangen, wenn die Nullhypothese in Wirklichkeit nicht zutrifft, diese aber aufgrund der Informationen aus dem Datensatz fälschlicherweise beibehalten wird.

Mehr zu diesem Thema findest Du in der Erklärung Inferenzstatistik.

Deskriptive und Beurteilende Statistik – Beispiele

Damit Du Dir den Unterschied zwischen der Beurteilenden und der Deskriptiven Statistik etwas besser vorstellen kannst, sind hier zwei Beispiele dargestellt.

Beispiel für die Deskriptive Statistik

Eine Englischlehrerin ist mit dem Wortschatz ihrer Klasse unzufrieden, also entscheidet sie, jede Woche aus der 30-köpfigen Klasse zehn zufällig ausgewählte Schüler einen Vokabeltest machen zu lassen.

Das Ergebnis der ersten Woche lautet:

SchülerSchüler 1Schüler 2Schüler 3Schüler 4Schüler 5Schüler 6Schüler 7Schüler 8Schüler 9Schüler 10
Note\[3\]\[1\]\[4\]\[3\]\[2\]\[6\]\[4\]\[5\]43

Damit die Schüler Ihre aktuelle Leistung veranschaulicht bekommen, entwirft die Lehrerin einen Notenspiegel. Dafür zählt sie zusammen, wie oft welche Note erreicht wird.

Raus kommt folgender Notenspiegel:

Note123456
Anzahl\[1\]\[1\]\[3\]\[3\]\[1\]\[1\]

Um jetzt noch den Durchschnitt auszurechnen, addiert sie alle erreichten Noten und teilt diese Summe durch die Anzahl der teilnehmenden Schüler. Raus kommt der Durchschnitt \(3,4\). Das ist zwar lediglich befriedigend, doch die Lehrerin hatte bisher den Eindruck, dass es viel schlimmer um die Vokabelkenntnisse ihrer Schüler steht.

Mit diesem Notenspiegel hat die Englischlehrerin deskriptive Statistik durchgeführt. Mithilfe von Tabellen und Rechnungen hat sie die Daten aus der Stichprobe ausgewertet und interpretiert.

Dieses Beispiel kann dann wie folgt weitergeführt werden:

Beispiel für beurteilende Statistik

Jetzt hat die Englischlehrerin einen Durchschnitt ermittelt, dieser ist allerdings nur von zehn der insgesamt 30 Schüler. Da dieser Durchschnitt aber nicht so schlecht ausgefallen war, wie sie dachte, beschließt die Lehrerin erst mal keine weiteren Maßnahmen zur Verbesserung der Vokabelkenntnisse durchzuführen. Ihre Hypothese ist es, dass die Annahme, dass der Notenspiegel nicht repräsentativ ist, falsch ist.

Jetzt vergeht eine weitere Woche, in der die Lehrerin beschlossen hat, keine weiteren Vokabeltests durchzuführen. Doch wie vorher, hat die Lehrerin das Gefühl, dass die Schüler ihre Vokabeln nicht beherrschen. Also beschließt sie, einen weiteren Vokabeltest mit allen 30 Schülern durchzuführen. Diesmal sieht der Notenspiegel aber so aus:

Note
1
2
3
4
5
6
Anzahl
\[1\]
\[2\]
\[6\]
\[9\]
\[7\]
\[5\]

Der Durchschnitt liegt bei \(4,1\), also viel schlechter als zuvor.

Die Lehrerin hat nach dem ersten Vokabeltest einen Fehler 1. Art begangen. Das heißt, dass die Annahme, dass der erste Notenspiegel nicht repräsentativ ist, fälschlich abgetan worden war, obwohl sie richtig ist.

Dieser Repräsentationsschluss und der Fehler 1. Art sind Teile dessen, worum es sich in der beurteilenden Statistik handelt.

Statistik – Das Wichtigste

  • Bei der Statistik handelt es sich um die Sammlung, Zusammenfassung, Analyse und Darstellung von Daten. Dazu auch die Methoden, die bei Ungewissheit vernünftige Entscheidungen ermöglichen.
  • Wichtige Begriffe der Statistik, die Du Dir merken solltest, sind die Grundgesamtheit, Stichprobe, Merkmalsträger, Merkmal, Ausprägung und Wertebereich
  • Die Deskriptive Statistik, auch beschreibende Statistik genannt, behandelt die Sammlung, Zusammenfassung, Analyse und Darstellung von Daten. Das Ziel der deskriptiven Statistik ist es, einen Überblick über den vorliegenden Datensatz zu geben.
  • Das Skalen- oder Messniveau einer Variablen klassifizieren ihren Aussagegehalt in etwa einer Studie. Unterschieden wird zwischen den drei Skalenniveaus Nominalskala, Ordinalskala und metrischer Skala.
  • Die beurteilende Statistik, auch induktive Statistik genannt, stellt die Methoden, die bei Ungewissheit vernünftige Entscheidungen ermöglichen, bereit.
  • Wenn die verwendete Stichprobe repräsentativ für die Grundgesamtheit darstellt, kann die können von der Stichprobe Rückschlüsse auf die Grundgesamtheit gezogen werden.
  • Bei dem Hypothesentest werden die Schlussfolgerung aus der Stichprobe, Nullhypothese, und ihr Gegenereignis, die Alternativhypothese, untersucht. Die Frage, welcher der beiden Hypothesen am glaubwürdigsten ist, wird durch die Binomialverteilung beantwortet.
  • Der Fehler 1. Art wird begangen, wenn die Nullhypothese zwar in Wirklichkeit zutrifft, diese aber aufgrund der Informationen aus dem Datensatz fälschlicherweise verworfen wird.
  • Der Fehler 2. Art wird begangen, wenn die Nullhypothese in Wirklichkeit nicht zutrifft, diese aber aufgrund der Informationen aus dem Datensatz fälschlicherweise beibehalten wird.

Häufig gestellte Fragen zum Thema Statistik

Es gibt die beurteilende und die beschreibende Statistik. 


Die beschreibende oder deskriptive Statistik versucht, Daten darzustellen und zu ordnen. Dafür werden beispielsweise Tabellen, aber auch bestimmte Lagemaße und Streuungsmaße verwendet. 


Die beurteilende Statistik versucht, durch die Daten aus der beschreibenden Statistik allgemeine Regeln für die Grundgesamtheit zu ziehen.

Bei der Statistik handelt es sich einfach erklärt um die Sammlung, Zusammenfassung, Analyse und Darstellung von Daten. Dazu zählen auch die Methoden, die bei Ungewissheit vernünftige Entscheidungen ermöglichen.

Bei Statistik lernst Du, wie Du Daten sammelst, zusammenfasst, analysierst und darstellst. Außerdem lernst Du die Methoden, die bei Ungewissheit vernünftige Entscheidungen ermöglichen. 

Eine Statistik kannst Du nicht direkt berechnen, Du kannst aber Kennzahlen, wie die Lagemaße, Streuungsmaße und Zusammenhangsmaße berechnen.

Finales Statistik Quiz

Statistik Quiz - Teste dein Wissen

Frage

Marc Wettermann arbeit als Meteorologe beim Fernsehen. Zu seinen Aufgaben gehört es statistische Daten des Wetters zu erheben. Darunter versteht sein Arbeitgeber den Mittelwert, die Varianz und die Standardabweichung. Für eine Woche erhält er folgende Werte der Temperatur (Runde auf zwei Stellen nach dem Komma):

Montag: 6,4°C

Dienstag: 6,3°C

Mittwoch: 4,2°C

Donnerstag: 5,0°C

Freitag: 7,3°C

Samstag: 3,2°C

Sonntag: 5,1°C


Bestimme die geforderten Werte für die Woche. Marc gibt diese Aufgabe an seine drei Mitarbeiter, die mit verschiedenen Werten wiederkommen. Welcher der Mitarbeiter hat recht?

Antwort anzeigen

Antwort

Mittelwert: 1,41°C

Varianz: 1,31

Standardabweichung: 1,71°C

Frage anzeigen

Frage

Varianz einer Binomialverteilung!


Ein Glücksrad mit vier gleichgroßen Feldern (rot, blau, gelb, grün) wird 20-mal gedreht.

Die Zufallsvariable X gibt die Anzahl der gedrehten blauen Felder an. Berechne die Varianz dieser Zufallsvariablen!

Antwort anzeigen

Antwort

V(X) = 3,75

Frage anzeigen

Frage

Du fährst jeden Tag mit dem Bus in die Schule und schreibst dir jeden Tag auf, wie viel Verspätung der Bus hat. Du erhälst folgende Werte: 


Tag 1: 6 Minuten 

Tag 2: 1 Minute

Tag 3: 4 Minuten

Tag 4: 2 Minuten 

Tag 5: 7 Minuten


  1. Berechne die Varianz
  2. Wie würde sich die Varianz verändern, wenn der Bus an Tag 3 nur 3 Minuten, aber an Tag 5 = 8 Minuten Verspätung hätte?

Antwort anzeigen

Antwort

  1. Die Varianz beträgt 5,2
  2. Die Varianz beträgt 6,8

Frage anzeigen

Frage

Berechne zu den folgenden Wertereihen den Durchschnittswert (D) sowie die Varianz (V)


a. 6, 9, 10, 8, 7

b. 1,1; 0,9; 1,3; 1,3; 1,4

c. 20, 18, 16, 22, 21, 17

Antwort anzeigen

Antwort

a. D=8 ; V= 2

b. D=1,2 ; V=0,032

c. D=19 ; V=4,67

Frage anzeigen

Frage

Berechne zu den folgenden Wertereihen den Durchschnittswert (D) sowie die Varianz (V)


a. 1, 3, 2, 2.5, 1, 2,5

b. 0.5, 0.4, 0.5, 0.7, 0.4, 0.5

c. 25, 26, 23, 23, 24, 23

Antwort anzeigen

Antwort

a. D=2   V=0,583

b. D=0,5   V=0,01

c. D=24   V=1,33

Frage anzeigen

Frage

Berechne zu den folgenden Wertereihen den Durchschnittswert (D) sowie die Varianz (V)


a. 0, 0, 1, 2, 0, 3

b. 0.8, 0.7, 0.8, 0.9, 0.6, 0.4

c. 50, 53, 51, 52, 50, 50

Antwort anzeigen

Antwort

a. D=1  V=1,33

b. D=0,7   V=0,0266

c. D=51   V=1,33

Frage anzeigen

Frage

Berechne den Durchschnitt (D) und die Standardabweichung (S) der folgenden Zahlenreihen


a. 2, 3, 1, 3, 3, 1, 2, 1

b. 0.2, 0.3, 0.2, 0.1, 0.2

c. 20, 21, 18, 18, 23, 20

Antwort anzeigen

Antwort

a. D=2  S=0,866

b. D=0.2   S=0,063

c. D=20  S=1,73

Frage anzeigen

Frage

Berechne den Durchschnitt (D) und die Standardabweichung (S) der folgenden Zahlenreihen


a. 3, 5, 1, 2, 2, 5

b. 0.8, 0.7, 0.9, 0.9, 0.7

c. 50, 55, 53, 52, 40, 50

Antwort anzeigen

Antwort

a. D=3    S=1,58

b. D=0,8   S=0,089

c. D=50   S=4,8

Frage anzeigen

Frage

Berechne den Durchschnitt (D) und die Standardabweichung (S) der folgenden Zahlenreihen


a. 5, 6, 4, 8, 5, 8

b. 0.5, 0.6, 0.6, 0.5, 0.8

c. 55, 65, 65, 75, 60, 70

Antwort anzeigen

Antwort

a. D=6   S=1,53

b. D=0,6  S=0,11

c. D=65   S=6,45

Frage anzeigen

Frage

Berechne den Durchschnitt (D) und die Standardabweichung (S) der folgenden Zahlenreihen


a. 7, 12, 9, 12, 11, 9  

b. 0.4, 0.4, 0.5, 0.4, 0.3

c. 89, 95, 88, 87, 91, 90

Antwort anzeigen

Antwort

a. D=10   S=1,83

b. D=0,4   S=0,063

c. D=90   S= 2,58

Frage anzeigen

Frage

Berechne den Durchschnitt (D) und die Standardabweichung (S) der folgenden Zahlenreihen


a. 8, 9, 10, 6, 7, 8  

b. 0.1, 0, 0.2, 0.2, 0

c. 71, 72, 77, 77, 78, 75

Antwort anzeigen

Antwort

a. D=8   S=1,29

b. D=0,1   S=0,089

c. D=75   S=2,65

Frage anzeigen

Frage

Berechne zu den folgenden Wertereihen den Durchschnittswert (D) sowie die Varianz (V) 


a. 2; 1; 3; 5; 6; 7

b. 51; 58; 55; 59; 52

c. 14; 18; 15; 17; 19; 21; 22



Antwort anzeigen

Antwort

a. D = 4

    V = 4,67

b. D = 55

    V = 10

c. D = 18

    V = 4,43

Frage anzeigen

Frage

Berechne den Durchschnitt (D) und die Standardabweichung (S) der folgenden Zahlenreihen


a. 2, 3, 5, 2, 4, 2

b. 0,3; 0,4; 0,5; 0,5; 0,3

c. 28; 27, 29, 31, 30, 29

Antwort anzeigen

Antwort

a. D=3   S=1,154

b. D= 0,4   S=0,089

c. D=29   S=1,29

Frage anzeigen

Frage

Berechne den Durchschnitt (D) und die Standardabweichung (S) der folgenden Zahlenreihen


a. 7, 8, 6, 5, 9, 7

b. 0,7; 0,8; 0,7; 0,6; 0,7

c. 33; 35; 34; 36; 32; 34

Antwort anzeigen

Antwort

a. D=7   S=1,29

b. D=0,7   S=0,063

C: D=34   S=1,29

Frage anzeigen

Frage

Berechne den Durchschnitt (D) und die Standardabweichung (S) der folgenden Zahlenreihen


a. 6, 10, 3, 7, 4, 6

b. 0,01; 0,05; 0,04; 0,06; 0,04

c. 82, 84, 83, 85, 82, 88

Antwort anzeigen

Antwort

a. D=6   S=2,24

b. D=0,04   S=0,0167

c. D=84   S=2,08

Frage anzeigen

Frage

Berechne den Durchschnitt (D) und die Standardabweichung (S) der folgenden Zahlenreihen


a. 5, 6, 4, 6, 5, 4

b. 0,5; 0,3; 0,8; 0,7; 0,2

c. 66; 68; 65; 65; 67; 65

Antwort anzeigen

Antwort

a. D=5   S=0,816

b. D= 0,5   S=0,51

c. D=66   S=1,154

Frage anzeigen

Frage

Berechne zu den folgenden Wertereihen den Durchschnittswert (D) sowie die Varianz (V) 


a. 3; 5; 6; 2; 4; 4

b. 50; 56; 48; 47; 49

c. 10,0; 10,5; 10,2; 10,3; 10,2; 10,3

Antwort anzeigen

Antwort

a. D=4   V=1,67

b. D=50   V=10

c. D=10,25   V=0,0225

Frage anzeigen

Frage

Berechne zu den folgenden Wertereihen den Durchschnittswert (D) sowie die Varianz (V) 


a. 5, 4, 6, 5, 7, 3

b. 51, 55, 53, 56, 53, 50

c. 1,5; 1,8; 1,6; 1,6; 1,4; 1,7

Antwort anzeigen

Antwort

a. D=5   V=1,67

b. D=53   V=4,33

c. D=1,6   V=0,1

Frage anzeigen

Frage

Berechne zu den folgenden Wertereihen den Durchschnittswert (D) sowie die Varianz (V) 


a. 6, 5, 5, 8, 4, 8

b. 72, 73, 76, 77, 77

c. 2,5; 2,6; 2,8; 2,3; 2,3; 2,5

Antwort anzeigen

Antwort

a. D=6   V=2,33

b. D=75   V=4,4

d. D=2,5   V=0,03

Frage anzeigen

Frage

Berechne zu den folgenden Wertereihen den Durchschnittswert (D) sowie die Varianz (V) 


a. 7, 5, 5, 7, 6, 6

b. 65, 64, 66, 67, 63

c. 1,4; 1,35; 1,4; 1,35; 1,5

Antwort anzeigen

Antwort

a. D=6   V=0,67

b. D=65   V=2

c. D=1,4   V=0,003

Frage anzeigen

Frage

Berechne zu den folgenden Wertereihen den Durchschnittswert (D) sowie die Varianz (V)


a. 5, 6, 5, 4, 7, 3

b. 1,5; 1,6; 1,5; 1,4; 1,5; 1,5

c. 72, 75, 75, 76, 73, 73

Antwort anzeigen

Antwort

a. D= 5   V= 1,67

b. D= 1,5   V= 0,0033

c. D= 74   V= 2

Frage anzeigen

Frage

Berechne zu den folgenden Wertereihen den Durchschnittswert (D) sowie die Varianz (V)


a. 2, 3, 2, 2, 3, 0

b. 0,4; 0,6; 0,5; 0,8; 0,3; 0,4

c. 55, 56, 58, 53, 52, 56

Antwort anzeigen

Antwort

a. D=2   V= 1

b. D=0,5   V= 0,0267

c. D=55  V=4

Frage anzeigen

Frage

Berechne zu den folgenden Wertereihen den Durchschnittswert (D) sowie die Varianz (V)


a. 0; 0,5; 0,8; 1,3; 1,4; 2

b. 5, 6, 5, 8, 3, 3

c. 100, 103, 102, 105, 95,

Antwort anzeigen

Antwort

a. D=1   V= 0,2567

b. D=5   V=3

c. D=101   V=11,6

Frage anzeigen

Frage

Ein fairer Würfel wird geworfen. Berechne die Varianz, wenn der Würfel


  1. die Zahlen 1,2,3,4,5 und 6 enthält
  2. die Zahlen 2,4,8,16,32 und 64 enthält

Antwort anzeigen

Antwort

  1. 2,91666666
  2. 469

Frage anzeigen

Frage

In einer Urne sind 2 rote und 3 blaue Kugeln. Es wird mit zurücklegen gezogen. Sei X die Anzahl der gezogenen roten Kugeln. Berechne die Varianz von X, wenn

  1. 2 Mal gezogen wird.
  2. 3 Mal gezogen wird.

Antwort anzeigen

Antwort

  1. 0,48
  2. 0,72

Frage anzeigen

Frage

Ein Glücksrad hat einen roten Sektor und einen blauen Sektor. Der rote Sektor hat eine Größe von p (0<p<1), der blaue eine Größe von 1 -p. Das Rad wird einmal gedreht. Sei X eine Zufallsvariable mit X= 1, wenn das Rad rot zeigt, und 0, wenn es Blau zeigt.

  1. Berechne in Abhängigkeit von p die Varianz von X
  2. für welchen Wert von p wird die Varianz von X maximal?
  3.  Wie groß ist die Varianz in diesem Fall?

Antwort anzeigen

Antwort

  1. p-p²
  2.  p =0,5; 
  3. Varianz = 0,25

Frage anzeigen

Frage

Der Notenspiegel bei einer Klausur sieht wiefolgt aus: 4 Schüler haben eine 1, 7 Schüler eine 2, 6 Schüler eine 3, 5 Schüler eine 4 und 3 Schüler haben eine 5.


  1. Berechne die Varianz der Noten.
  2. Bei 3 Schülern, die die Klausur nachgeschrieben haben, haben 2 Schüler eine 4 und ein Schüler eine 5. Berechne die neue Varianz des Notenspiegels.

Antwort anzeigen

Antwort

  1.  Varianz = 1,5744
  2. Varianz =  1,64285

Frage anzeigen

Frage

Berechne zu den folgenden Wertereihen den Durchschnittswert (D) sowie die Varianz (V)


a. 5, 7, 7, 8, 8

b. 2,0; 2,5; 2,4; 2,0; 2,1; 2,2

c. 34; 33; 34; 35; 33; 35

Antwort anzeigen

Antwort

a. D=7 ; V=1,2

b. D=2,2 ; V=0,0367

c. D=34 ; V=0,67

Frage anzeigen

Frage

Berechne zu den folgenden Wertereihen den Durchschnittswert (D) sowie die Varianz (V)


a. 3, 5, 9, 5, 3

b. 1,5 ; 1,7; 1,4; 1,5; 1,3; 1,6

c. 41, 45, 46, 42, 42, 42

Antwort anzeigen

Antwort

a. D=5; V=4,8

b. D=1,5; V=0,0167

c. D=43; V=3,33

Frage anzeigen

Frage

Berechne zu den folgenden Wertereihen den Durchschnittswert (D) sowie die Varianz (V)


a. 5, 6, 7, 5, 7

b. 2,2; 1,7; 2,0; 2,2; 1,9; 2,0

c. 33, 35, 36, 34, 33, 33

Antwort anzeigen

Antwort

a, D=6 ; V=0,8

b. D=2,0 ; V=0,03

c. D=34 ; V=1,33

Frage anzeigen

Frage

Berechne den Durchschnitt (D) und die Standardabweichung (S) der folgenden Zahlenreihen


a. 3, 2, 5, 4, 3, 7

b. 0.5, 0.4, 0.5, 0.7, 0.4

c. 33, 35, 36, 36, 34, 36

Antwort anzeigen

Antwort

a. D=4 ; S=1,63

b. D=0,5 ; S=0,11

c. D=35 ; S=1,15

Frage anzeigen

Frage

Berechne den Durchschnitt (D) und die Standardabweichung (S) der folgenden Zahlenreihen


a. 5, 7, 6, 8, 4

b. 0.2, 0.3, 0.3, 0.1, 0.1, 0.2

c. 44, 38, 39, 39, 42, 38

Antwort anzeigen

Antwort

a. D=6 ; S=1,41

b. D=0,2 ; S=0,082

c. D=40 ; S=2,24

Frage anzeigen

Frage

Berechne den Durchschnitt (D) und die Standardabweichung (S) der folgenden Zahlenreihen


a. 6, 6, 8, 5, 5

b. 0.5, 1.5, 1.5, 1.0, 1.0 , 0.5

c. 55, 56, 52, 56, 55, 56

Antwort anzeigen

Antwort

a. D=6 ; S=1,095

b. D=1 ; S=0,41

c. D=55 ; S=1,41

Frage anzeigen

Frage

Berechne den Durchschnitt (D) und die Standardabweichung (S) der folgenden Zahlenreihen


a. 2, 8, 5, 7, 3

b. 0.7, 0.8, 0.9, 0.7, 0.7, 1

c. 85, 84, 89, 86, 88, 84

Antwort anzeigen

Antwort

a. D=5 : S=2,28

b. D=0,8 ; S=0,15

c. D=86  S=1,91

Frage anzeigen

Frage

Berechne den Durchschnitt (D) und die Standardabweichung (S) der folgenden Zahlenreihen


a. 9, 9, 3, 2, 2

b. 1.3, 1.2, 1.4, 1.5, 1.2, 1.2

c. 66, 68, 60, 66, 64, 66

Antwort anzeigen

Antwort

a. D=5 ; S=3,49

b. D=1,3 ; S=0,115

c. D=65 ; S=2,52

Frage anzeigen

Frage

Berechne den Durchschnitt (D) und die Standardabweichung (S) der folgenden Zahlenreihen


a. 9, 7, 3, 0, 1

b. 1.5, 1.6, 1.6, 1.3, 1.5, 1.5

c. 74, 76, 75, 72, 76, 77

Antwort anzeigen

Antwort

a. D=4 ; S=3,46

b. D=1,5 ; S=0,1

c. D=75 ; S=1,63

Frage anzeigen

Frage

Berechne den Durchschnitt (D) und die Standardabweichung (S) der folgenden Zahlenreihen


a. 5, 3, 6, 6, 5

b. 1.4, 1.8, 1.7, 1.5, 1.5, 1.7

c. 85, 88, 85, 86, 89, 89

Antwort anzeigen

Antwort

a. D=5 ; S=1,41

b. D=1.6 ; S=0,41

c.  D=87 ; S=1,73

Frage anzeigen

Frage

Berechne den Durchschnitt (D) und die Standardabweichung (S) der folgenden Zahlenreihen


a. 3, 6, 3, 5, 3

b. 3.5, 3,6, 3.2, 3.8, 3.4, 3.5

c. 95, 98, 90, 97, 93, 97

Antwort anzeigen

Antwort

a. D=4 ; S=1,26

b. D=3.5 ; S=0,18

c. D=95 ; S=2,77

Frage anzeigen

Frage

Berechne den Durchschnitt (D) und die Standardabweichung (S) der folgenden Zahlenreihen


a. 10, 15, 7, 7, 11

b. 2.3, 2.1, 2.4, 2.5, 2.2, 2.3

c. 67, 68, 63, 67, 64, 67

Antwort anzeigen

Antwort

a. D=10 ; S=2,97

b.  D=2,3 ; S=0,13

c.  D=66 ; S=1,83

Frage anzeigen

Frage

Berechne den Durchschnitt (D) und die Standardabweichung (S) der folgenden Zahlenreihen


a. 12, 7, 6, 9, 6

b. 1.8, 1.9, 2.2, 2.2, 2.1, 1.8

c. 72, 75, 73, 75, 74, 75

Antwort anzeigen

Antwort

a. D=8 ; S=2,28

b. D=2,0 ; S=0,17

c. D=74 ; S=1,15

Frage anzeigen

Frage

Wähle aus, wie ein Boxplot noch genannt wird.

Antwort anzeigen

Antwort

Kastengrafik

Frage anzeigen

Frage

Zeige auf, wofür der Boxplot genutzt wird.

Antwort anzeigen

Antwort

Der Boxplot ist ein Diagramm, das die Verteilung statistischer Daten grafisch darstellt. Es wird häufig zur übersichtlichen Zusammenfassung großer Datenmengen verwendet.

Frage anzeigen

Frage

Nenne die Punkte, die ein Boxplot enthält.

Antwort anzeigen

Antwort

Ein Boxplot besteht aus:

  • einer Achse mit Einheit,
  • dem Minimum (dem kleinsten Datenwert)
  • dem untereren Whisker (Antenne),
  • dem unteren Quartil \(Q_1\),
  • dem Median M (die Mitte des Datensatzes),
  • dem oberen Quartil \(Q_3\),
  • dem Maximum (dem größten Datenwert),
  • dem oberen Whisker (Antenne),
  • und Ausreißern (Werte, die das Maximum bzw. Minimum überschreiten).

Frage anzeigen

Frage

Erkläre, was ein Median ist.

Antwort anzeigen

Antwort

Der Median ist der Wert, der bei einer nach der Größe geordneten Datenreihe genau in der Mitte steht. 

Er teilt den vorliegenden Datensatz in zwei Hälften, die jeweils \(50\,\%\) der Daten umfassen.

Frage anzeigen

Frage

Was sind Angelpunkte? Nenne sie und erkläre ihren Sinn.

Antwort anzeigen

Antwort

Der untere Angelpunkt ist das untere Quartil und der Median der unteren Datenhälfte.

Der obere Angelpunkt ist das obere Quartil und der Median der oberen Datenhälfte. 

Frage anzeigen

Frage

Benenne die einzelnen Abschnitte bei einer „Vierteilung“ des Boxplots.

Antwort anzeigen

Antwort

Ein Boxplot besteht bei einer Vierteilung aus drei Quartilen \(Q_1\), \(Q_2=M\) und \(Q_3\).

Frage anzeigen

Frage

Nenne die mathematischen Bezeichnungen für das obere und untere Quartil.

Antwort anzeigen

Antwort

Das untere Quartil heißt auch \(Q_1\), das obere Quartil \(Q_3\).

Frage anzeigen

Frage

Nenne die Formel, mit welcher Du den Interquartilabstand \(\text{IQA}\) berechnen kannst.

Antwort anzeigen

Antwort

\[\text{IQA}  = Q_3 - Q_1\]

Frage anzeigen

Frage

Nenne die Formel, mit welcher Du die untere Ausreißergrenze berechnen kannst.

Antwort anzeigen

Antwort

\[Q_1-1{,}5\cdot\text{IQA}\]

Frage anzeigen

Frage

Nenne die Formel, mit welcher Du die obere Ausreißergrenze berechnen kannst.

Antwort anzeigen

Antwort

\[Q_3+1{,}5\cdot \text{IQA}\]

Frage anzeigen

Mehr zum Thema Statistik
60%

der Nutzer schaffen das Statistik Quiz nicht! Kannst du es schaffen?

Quiz starten

Wie möchtest du den Inhalt lernen?

Karteikarten erstellen
Inhalte meiner Freund:innen lernen
Ein Quiz machen

94% der StudySmarter Nutzer erzielen bessere Noten.

Jetzt anmelden

94% der StudySmarter Nutzer erzielen bessere Noten.

Jetzt anmelden

Wie möchtest du den Inhalt lernen?

Karteikarten erstellen
Inhalte meiner Freund:innen lernen
Ein Quiz machen

Kostenloser mathe Spickzettel

Alles was du zu . wissen musst. Perfekt zusammengefasst, sodass du es dir leicht merken kannst!

Jetzt anmelden

Finde passende Lernmaterialien für deine Fächer

Alles was du für deinen Lernerfolg brauchst - in einer App!

Lernplan

Sei rechtzeitig vorbereitet für deine Prüfungen.

Quizzes

Teste dein Wissen mit spielerischen Quizzes.

Karteikarten

Erstelle und finde Karteikarten in Rekordzeit.

Notizen

Erstelle die schönsten Notizen schneller als je zuvor.

Lern-Sets

Hab all deine Lermaterialien an einem Ort.

Dokumente

Lade unzählige Dokumente hoch und habe sie immer dabei.

Lern Statistiken

Kenne deine Schwächen und Stärken.

Wöchentliche

Ziele Setze dir individuelle Ziele und sammle Punkte.

Smart Reminders

Nie wieder prokrastinieren mit unseren Lernerinnerungen.

Trophäen

Sammle Punkte und erreiche neue Levels beim Lernen.

Magic Marker

Lass dir Karteikarten automatisch erstellen.

Smartes Formatieren

Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.

Melde dich an für Notizen & Bearbeitung. 100% for free.

Fang an mit StudySmarter zu lernen, die einzige Lernapp, die du brauchst.

Jetzt kostenlos anmelden
Illustration