Hypothesentest

Hannes liest in einer Zeitschrift die Behauptung: "15 Prozent aller Kinder und Jugendliche spielen Handball." Das verwundert ihn, denn er kennt kaum jemanden, der Handball spielt. Deswegen überlegt Hannes, wie er diese Behauptung überprüfen kann und entscheidet sich, eine Stichprobe durchzuführen. 

Hypothesentest Hypothesentest

Erstelle Lernmaterialien über Hypothesentest mit unserer kostenlosen Lern-App!

  • Sofortiger Zugriff auf Millionen von Lernmaterialien
  • Karteikarten, Notizen, Übungsprüfungen und mehr
  • Alles, was du brauchst, um bei deinen Prüfungen zu glänzen
Kostenlos anmelden
Inhaltsverzeichnis
Inhaltsangabe

    Und hier kommt der Hypothesentest ins Spiel. Mithilfe des Hypothesentests kann Hannes entscheiden, bei welchen Ergebnissen der Stichprobe er die Behauptung annimmt und wann er sie ablehnt.

    Hypothesentest Statistik

    Hypothesentests sind ein Mittel der beurteilenden Statistik. Das heißt, ein Hypothesentest wird angewendet, um die Ergebnisse einer Stichprobe zu beurteilen. Hypothesentests werden manchmal auch als Signifikanztests genannt.

    Die Grundlage für einen jeden Hypothesentest sind zwei Hypothesen: die Nullhypothese und die Alternativhypothese.

    Eine Hypothese ist eine Behauptung, deren Gültigkeit durch statistische Verfahren überprüft wird. Um einen Hypothesentest durchführen zu können, werden zunächst zwei grundlegende Hypothesen formuliert:

    Die Nullhypothese \(H_0\) und die Alternativhypothese \(H_1\).

    Mit dem Hypothesentest soll entschieden werden, ob die Nullhypothese aufgrund der Ergebnisse der Stichprobe angenommen oder abgelehnt werden sollte. Dazu wird ein Annahme- und ein Ablehnungsbereich der Hypothese bestimmt.

    In dieser Erklärung findest Du einen Überblick über Hypothesentests und deren Hypothesen. In den Erklärungen einseitiger Hypothesentest, zweiseitiger Hypothesentest, Nullhypothese, Fehler Hypothesentest und Irrtumswahrscheinlichkeit findest Du tiefgehendere Erläuterungen mit weiteren Beispielen.

    Arten von Hypothesentests

    Es gibt verschieden Arten von Hypothesentests: einseitige Hypothesentests, beidseitige Hypothesentests und Alternativtests. Sie unterscheiden sich hauptsächlich in der Formulierung Alternativhypothese.

    Einseitiger Hypothesentest – gerichtete Hypothese

    Bei einem einseitigen Hypothesentest wird in der Alternativhypothese davon ausgegangen, dass die Wahrscheinlichkeit aus der Nullhypothese entweder größer oder kleiner ist. Die Alternativhypothese ist gerichtet, da sie eine "Richtung" angibt, in der die Wahrscheinlichkeit abweicht.

    Vermutest Du, dass die Wahrscheinlichkeit kleiner ist, handelt es sich um einen linksseitigen Hypothesentest.

    Die Nullhypothese \(H_0\) geht von einer bekannten Wahrscheinlichkeit \(p_0\) aus. In der Alternativhypothese \(H_1\) wird davon ausgegangen, dass die Wahrscheinlichkeit kleiner ist: \(p<p_0\)

    Es handelt sich um einen linksseitigen Hypothesentest, da besonders kleine Werte links vom Erwartungswert \(\mu\) gegen die Nullhypothese sprechen.

    Bei einem linksseitigen Hypothesentest liegt der Ablehnungsbereich für die Nullhypothese nur auf der linken Seite des Erwartungswertes. Nur diese Seite ist für die Untersuchung der Hypothese von Bedeutung.

    Es ist natürlich aber auch möglich, dass in der Alternativhypothese von einer größeren Wahrscheinlichkeit ausgegangen wird. Dann wird ein rechtsseitiger Hypothesentest durchgeführt.

    Die Nullhypothese \(H_0\) geht von einer bekannten Wahrscheinlichkeit \(p_0\) aus. In der Alternativhypothese \(H_1\) wird davon ausgegangen, dass die Wahrscheinlichkeit größer ist: \(p>p_0\)

    Es handelt sich um einen linksseitigen Hypothesentest, da besonders kleine Werte links vom Erwartungswert \(\mu\) gegen die Nullhypothese sprechen.

    Links- und rechtsseitige Hypothesentests erkennst Du stets daran, dass in der Alternativhypothese die Wahrscheinlichkeit kleiner oder größer als die Wahrscheinlichkeit in der Nullhypothese sein soll.

    Betrachte das Beispiel aus dem Einstieg: "15 Prozent aller Kinder und Jugendliche spielen Handball."

    Hannes führt eine Stichprobe mit Hypothesentest durch. Die Nullhypothese lautet:

    $$H_0:\text{Die Wahrscheinlichkeit, dass ein Kind Handball spielt, ist }p=0,15$$

    Hannes vermutete weniger Handballspieler*innen. Deswegen ist ein linksseitiger Hypothesentest sinnvoll. Die Alternativhypothese ist dann:

    $$H_1:\text{Die Wahrscheinlichkeit, dass ein Kind Handball spielt, ist }p<0,15$$

    Lisa hingegen kennt sehr viele Kinder, die Handball spielen. Sie vermutet, dass es sogar mehr als 15 Prozent sind. Würde Lisa einen Hypothesentest durchführen, wäre es ein rechtsseitiger Hypothesentest mit Alternativhypothese:

    $$H_1:\text{Die Wahrscheinlichkeit, dass ein Kind Handball spielt, ist }p>0,15$$

    Sowohl beim linksseitigen als auch beim rechtsseitigen Hypothesentest wird keine konkrete Wahrscheinlichkeit in der Alternativhypothese angegeben. Es wird aber immer in der Alternativhypothese genannt, ob die alternative Wahrscheinlichkeit kleiner (linksseitig) oder größer (rechtsseitig) ist. Ein einseitiger Hypothesentest ist ein spezifischer Hypothesentest, da die Alternativhypothese eine Aussage über die Größe der Wahrscheinlichkeit enthält.

    In der Erklärung "einseitiger Hypothesentest" kannst Du mehr zu diesem Thema erfahren.

    Zweiseitiger Hypothesentest – ungerichtete Hypothese

    Es ist bei einem Hypothesentest auch möglich, dass in der Alternativhypothese die Wahrscheinlichkeit aus der Nullhypothese nur verneint und nicht angegeben wird, ob sie größer oder kleiner ist. Dann handelt es sich um einen zweiseitigen Hypothesentest. Die Hypothese wird auch ungerichtete Hypothese genannt, da sie keine Richtung der Wahrscheinlichkeit angibt.

    Die Nullhypothese \(H_0\) geht von einer bekannten Wahrscheinlichkeit \(p_0\) aus. In der Alternativhypothese \(H_1\) wird davon ausgegangen, dass die Wahrscheinlichkeit nicht stimmt: \(p\neq p_0\)

    Es handelt sich um einen zweiseitgen Hypothesentest, da besonders kleine Werte links vom Erwartungswert \(\mu\) und besonders große Werte rechts vom Erwartungswert \(\mu\) gegen die Nullhypothese sprechen.

    Sowohl die Seite links vom Erwartungswert als auch die Seite rechts vom Erwartungswert sind hier für die Beurteilung der Nullhypothese von Bedeutung.

    Emma glaubt auch nicht, dass 15 Prozent der Kinder Handball spielen. Sie hat aber auch keine Vermutung, ob es mehr oder weniger sind.

    Die Nullhypothese lautet weiterhin:

    $$H_0:\text{Die Wahrscheinlichkeit, dass ein Kind Handball spielt, ist }p=0,15$$

    Die Alternativhypothese ist jetzt:

    $$H_1:\text{Die Wahrscheinlichkeit, dass ein Kind Handball spielt, ist }p\neq0,15$$

    Ein zweiseitiger Hypothesentest ist ein unspezifischer Hypothesentest, da die Alternativhypothese keine spezifische Aussage über die Wahrscheinlichkeit trifft.

    Wenn Du mehr über zweiseitige Hypothesentests wissen möchtest, sieh Dir die Erklärung "zweiseitiger Hypothesentest" an.

    Alternativtest

    Manchmal enthalten beide Hypothesen konkrete Wahrscheinlichkeiten, insbesondere also auch die Alternativhypothese. Dann handelt es sich um einen Alternativtest.

    Die Nullhypothese \(H_0\) geht von einer bekannten Wahrscheinlichkeit \(p_0\) aus. Die Alternativhypothese \(H_1\) geht von einer konkreten Wahrscheinlichkeit \(p_1\) aus.

    Es handelt sich um einen Alternativtest, da zwei konkrete Wahrscheinlichkeiten benannt werden.

    Einen Alternativtest erkennst Du also stets daran, dass zwei unterschiedliche Wahrscheinlichkeiten in den Hypothesen angegeben werden.

    Pawel hat in einer anderen Zeitschrift gelesen, dass 8 Prozent der Kinder und Jugendlichen Handball spielen.

    Die Nullhypothese lautet nun weiterhin:

    $$H_0:\text{Die Wahrscheinlichkeit, dass ein Kind Handball spielt, ist }p=0,15$$

    Die Alternativhypothese ist jetzt:

    $$H_0:\text{Die Wahrscheinlichkeit, dass ein Kind Handball spielt, ist }p=0,08$$

    Es wird ein Alternativtest durchgeführt.

    Eine Besonderheit des Alternativtests ist, dass hier die Wahrscheinlichkeit für einen Fehler 2. Art bestimmt werden kann.

    Mehr über Fehler 1. und 2. Art erfährst Du in der Erklärung "Fehler Hypothesentest" oder hier weiter unten.

    Hypothesentest berechnen und durchführen

    Aber wie wird ein Hypothesentest denn eigentlich ausgeführt?

    Um einen Hypothesentest durchzuführen, kannst Du immer nach demselben Schema vorgehen.

    Zur Erinnerung: Grundlage eines Hypothesentests ist eine Stichprobe. Du benötigst sie, um zu entscheiden, ob die Nullhypothese angenommen oder abgelehnt werden sollte.

    Hypothesen aufstellen

    Zu Beginn eines jeden Hypothesentests stellst Du die Nullhypothese und die Alternativhypothese auf. Wie genau Du die Nullhypothese bestimmst, erfährst Du in der Erklärung "Nullhypothese".

    Je nachdem, ob Du einen ein- oder zweiseitigen Hypothesentest oder einen Alternativtest durchführen willst, stellst Du dann die Alternativhypothese unterschiedlich auf.

    Stichprobenumfang und Signifikanzniveau

    Wenn die Stichprobe bereits durchgeführt wurde, notiere Dir den Stichprobenumfang \(n\). Ansonsten legst Du ihn fest. Der Stichprobenumfang gibt an, wie häufig das Zufallsexperiment durchgeführt wurde. Das kann zum Beispiel sein, wie viele Leute befragt oder wie viele Gegenstände untersucht wurden.

    Die Stichprobe ist immer eine Bernoulli-Kette. Du beobachtest das Eintreten eines Ereignisses. Die Anzahl der "Treffer" wird als Testgröße bezeichnet und häufig mit \(X\) abgekürzt. Die Testgröße \(X\) ist dann binomialverteilt.

    Um im nächsten Schritt den Annahme- und den Ablehnungsbereich der Hypothese bestimmen zu können, legst Du das Signifikanzniveau fest. Es ist auch möglich, dass das Signifikanzniveau bereits vorgegeben ist.

    Je kleiner das Signifikanzniveau ist, desto unwahrscheinlicher ist es, die Nullhypothese abzulehnen, obwohl sie richtig ist.

    Ein häufiger Wert für das Signifikanzniveau ist zum Beispiel \(\alpha=0,05\).

    Entscheidungsregel: Annahme- und Ablehnungsbereich bestimmen

    Um schlussendlich zu entscheiden, ob die Nullhypothese angenommen oder abgelehnt wird, benötigst Du einen Annahme- und einen Ablehnungsbereich.

    Der Ablehnungsbereich \(\overline{A}\) beinhaltet alle Werte, bei dessen Eintreten als Stichprobenergebnis die Nullhypothese abgelehnt wird. Er wird auch kritischer Bereich genannt.

    Der Annahmebereich \(A\) beinhaltet alle Werte, bei dessen Eintreten als Stichprobenergebnis die Nullhypothese angenommen wird.

    Den Annahme- sowie Ablehnungsbereich der Hypothese kannst Du mit der Tabelle für kumulierte Wahrscheinlichkeiten bestimmen. Je nach Stichprobenumfang \(n\) und Wahrscheinlichkeit \(p_0\) aus der Nullhypothese, wählst Du die geeignete Tabelle. Dann unterscheidest Du, ob es sich um einen linksseitigen, rechtsseitigen oder zweiseitigen Hypothesentest handelt.

    Ist es ein linksseitiger Hypothesentest, suchst Du den letzten Wert \(k\), dessen Wahrscheinlichkeit \(P(X\leq k)\) gerade eben noch kleiner als das Signifikanzniveau ist. Dein Ablehnungsbereich ist dann

    $$\overline{A}=\{0,\dots,k\}$$

    und der Annahmebereich beginnt bei \(k+1\):

    $$A=\{k+1,\dots,n\}$$

    Führst Du hingegen einen rechtsseitigen Hypothesentest durch, formst Du um, um den kritischen Wert aus der Tabelle ablesen zu können. Gesucht ist \(k\), sodass \(P(X\geq k)\leq \alpha\) ist. Umformen ergibt:

    \begin{align}P(X\geq k)&\leq\alpha \\ 1-P(X\leq k-1)&\leq \alpha \\P(X\leq k-1)&\geq 1-\alpha\end{align}

    In der Erklärung "kumulierte Binomialverteilung" kannst Du mehr über das Umformen erfahren.

    Du suchst also den ersten Wert \(k-1\), dessen Wahrscheinlichkeit gerade eben größer ist als \(1-\alpha\). Um den Ablehnungsbereich zu bestimmen, rechnest Du dann plus Eins.

    $$\overline{A}=\{k,\dots,n\}$$

    Der Annahmebereich ist

    $$A=\{0,\dots,k-1\}$$

    In der Erklärung "einseitiger Hypothesentest" findest Du eine ausführlichere Erklärung zum links- und rechtsseitigen Hypothesentest sowie Beispiele.

    Soll ein zweiseitiger Hypothesentest durchgeführt werden, gehst Du fast so vor, wie für einen links- und einen rechtsseitigen Test zusammen. Einziger Unterschied ist, dass Du sowohl auf der linken Seite als auch auf der rechten Seite \(\frac{\alpha}{2}\) als Grenze für die Wahrscheinlichkeit nimmst. Das Signifikanzniveau wird auf beide Seiten aufgeteilt.

    Eine genaue Erklärung hierfür mit Beispielen findest Du unter "zweiseitiger Hypothesentest".

    Nullhypothese annehmen oder ablehnen

    Im letzten Schritt prüfst Du, ob das Ergebnis der Stichprobe im Annahme- oder im Ablehnungsbereich der Hypothese liegt. Je nachdem nimmst Du die Nullhypothese an oder lehnst sie ab. Wenn Du die Nullhypothese ablehnst, nimmst Du die Alternativhypothese an.

    Hypothesentest – Binomialverteilung Näherung als Normalverteilung

    Du kannst den Annahme- und Ablehnungsbereich einer Hypothese auch über die Näherung als Normalverteilung bestimmen, wenn Du einen großen Stichprobenumfang hast.

    Voraussetzung für die Näherung als Normalverteilung ist, dass die Binomialverteilung eine Standardabweichung \(\sigma\) größer als 3 hat: \(\sigma>3\)

    Sigma-Regel

    Ist dies der Fall, kannst Du die Sigma-Regeln verwenden, um den Annahme- sowie den Ablehnungsbereich zu bestimmen.

    Für eine normalverteilte Zufallsgröße \(Z\) ist die Wahrscheinlichkeit \(P\), dass ein Wert aus dem Intervall \(I\) eintritt, mit den Werten für \(P\text{ und }I\) aus der Tabelle:

    Intervall \(I\)\(P(Z\in I)\)
    \( [\mu-1,64\sigma;\mu+1,64\sigma]\)\(\approx0,90\)
    \([\mu-1,96\sigma;\mu+1,96\sigma ]\)\(\approx0,95\)
    \( [\mu-2,58\sigma;\mu+2,58\sigma\)]\(\approx0,99\)

    Du weißt also dank der Sigma-Regel zum Beispiel, dass mit einer Wahrscheinlichkeit von 0,9 ein Wert im Intervall \( [\mu-1,64\sigma;\mu+1,64\sigma]\) eintritt. Bestimmst Du nun den Erwartungswert \(\mu\) und die Standardabweichung \(\sigma\) für die Binomialverteilung mit der Wahrscheinlichkeit \(p_0\) und setzt die Werte in das Intervall ein, so erhältst Du einen Annahmebereich.

    Möchtest Du mehr über die Sigma-Regeln wissen, dann sieh Dir die Erklärung "Sigma Regeln" an und in der Erklärung "Näherungsformel" findest Du weitere Informationen über die Näherung der Binomialverteilung als Normalverteilung.

    Fehler 1. und 2. Art (alpha-Fehler und beta-Fehler)

    Bei einem Hypothesentest können Fehler auftreten. So kann die Nullhypothese abgelehnt werden, obwohl sie richtig ist. Dieser Fehler wird Fehler 1. Art oder auch alpha-Fehler genannt.

    Die Nullhypothese kann aber auch angenommen werden, obwohl sie falsch ist. Dann handelt es sich um einen Fehler 2. Art, auch beta-Fehler genannt.

    Nullhypothese \(H_0\) ist wahrNullhypothese \(H_0\) ist falsch
    Nullhypothese \(H_0\) wird angenommenrichtige Entscheidungfalsche EntscheidungFehler 2. Art
    Nullhypothese \(H_0\) wird abgelehntfalsche EntscheidungFehler 1. Artrichtige Entscheidung

    Hypothesentest – Aufgaben & Beispiele

    Hier findest Du einige grundlegende Aufgaben zum Hypothesentest und dem Aufstellen von Hypothesen. In den einzelnen vernetzten Erklärung findest Du tiefergehende Aufgaben.

    Aufgabe 1

    Die Produktion von Armbanduhren in einer Fabrik wird auf Fehler untersucht. Die Nullhypothese eines Hypothesentests lautet:

    $$H_0: \text{Die Wahrscheinlichkeit für eine defekte Uhr ist }p=0,1$$

    Stelle die Alternativhypothese auf für einen

    a) linksseitigen Hypothesentest

    b) rechtsseitigen Hypothesentest

    c) zweiseitigen Hypothesentest

    Lösung

    a)

    Bei einem linksseitigen Hypothesentest geht die Alternativhypothese von weniger fehlerhaften Uhren aus.

    $$H_1: \text{Die Wahrscheinlichkeit für eine defekte Uhr ist }p<0,1$$

    b)

    Handelt es sich um einen rechtsseitigen Hypothesentest, werden mehr fehlerhafte Uhren in der Alternativhypothese vermutet.

    $$H_1: \text{Die Wahrscheinlichkeit für eine defekte Uhr ist }p>0,1$$

    c)

    Bei einem zweiseitigen Hypothesentest wird in der Alternativhypothese die Nullhypothese verneint.

    $$H_1: \text{Die Wahrscheinlichkeit für eine defekte Uhr ist }p\neq0,1$$

    Aufgabe 2Bestimme den Annahmebereich eines zweiseitigen Hypothesentests mit der Sigma-Regel für \(n=1000\) und \(p=0,2\) und dem Signifikanzniveau \(\alpha=0,05\)LösungZuerst überprüfst Du, ob die Binomialverteilung wirklich durch eine Normalverteilung angenähert werden kann. Dafür muss die Standardabweichung größer als 3 sein:\begin{align}\sigma&=\sqrt{n·p·(1-p)} \\ &=\sqrt{1000·0,2·0,8} \\ &\approx 12,65 >3\end{align}Die Sigma-Regel darf angewandt werden. Da das Signifikanzniveau \(\alpha=0,05\) ist, wird das Intervall \([\mu-1,96\sigma;\mu+1,96\sigma ]\) bestimmt. Der Erwartungswert ist\begin{align} \mu &=n·p\\&=1000·0,2 \\ &=200\end{align} Es ist \begin{align} \mu-1,96·\sigma &= 200-1,96·12,65 \\ &=175,206 \\ \mu+1,96·\sigma &= 200+1,96·12,65 \\ &=224,794\end{align} Bei einem zweiseitigen Hypothesentest werden die Grenzen immer nach innen gerundet. Der Annahmebereich ist $$A=\{176,\dots,224\}$$

    Hypothesentest - Das Wichtigste

    • Jeder Hypothesentest hat eine Nullhypothese und eine Alternativhypothese.
    • Auf Grundlage einer Stichprobe soll entschieden werden, ob die Nullhypothese angenommen oder abgelehnt wird.
    • Es wird ein Annahme- und ein Ablehnungsbereich der Nullhypothese bestimmt.
    • Es gibt verschieden Arten von Hypothesentests:
      • einseitiger Hypothesentest
        • linksseitiger Hypothesentest
        • rechtsseitiger Hypothesentest
      • zweiseitiger Hypothesentest
      • Alternativtest
    • Vorgehensweise bei einem Hypothesentest
      • Hypothesen aufstellen
      • Stichprobenumfang und Signifikanzniveau festlegen
      • Entscheidungsregel aufstellen: Annahme- und Ablehnungsbereich

    Nachweise

    1. Hartmann; Lois (2015). Hypothesentest. In: Hypothesen Testen. essentials. Springer Gabler.
    2. Baum et al. (2009). Lambacher Schweizer 11/12, Mathematik für Gymnasien, Gesamtband Oberstufe Niedersachsen. Ernst Klett Verlag.
    Hypothesentest Hypothesentest
    Lerne mit 15 Hypothesentest Karteikarten in der kostenlosen StudySmarter App

    Wir haben 14,000 Karteikarten über dynamische Landschaften.

    Mit E-Mail registrieren

    Du hast bereits ein Konto? Anmelden

    Häufig gestellte Fragen zum Thema Hypothesentest

    Kann ich Hypothesen beweisen? 

    Hypothesen werden nicht bewiesen. Du entscheidest nur aufgrund der Ergebnisse der Stichprobe, ob Du die Nullhypothese annimmst oder sie ablehnst. Wenn Du die Nullhypothese annimmst, ist dies kein Beweis dafür, dass sie wahr ist. Die Ergebnisse der Stichprobe legen nur eine Annahme der Nullhypothese nahe.

    Wie geht ein Hypothesentest? 

    Grundlage für einen Hypothesentest ist eine Stichprobe. Zu Beginn eines Hypothesentests stellst Du eine Nullhypothese und eine Alternativhypothese auf und legst das Signifikanzniveau fest. Dann bestimmst Du den Annahme- sowie den Ablehnungsbereich der Nullhypothese. Dazu kannst Du zum Beispiel die Tabelle für kumulierte Binomialverteilungen verwenden.

    Zum Schluss nimmst Du auf Grundlage der Entscheidungsregel die Nullhypothese an oder lehnst sie ab.

    Wann gilt die Nullhypothese? 

    Die Nullhypothese gilt, wenn das Ergebnis der Stichprobe im Annahmebereich der Nullhypothese liegt. Du nimmst die Nullhypothese an. Den Annahmebereich hast Du vorher in Bezug auf das Signifikanzniveau bestimmt.

    Warum mache ich einen Hypothesentest? 

    Du führst einen Hypothesentest durch, um eine Hypothese aufgrund von Stichprobenergebnissen anzunehmen oder abzulehnen. Du möchtest entscheiden, ob eine Hypothese zutrifft oder nicht. Dazu führst Du den Hypothesentest durch.

    Teste dein Wissen mit Multiple-Choice-Karteikarten

    Welche Aussagen über die Nullhypothese sind richtig? Wähl aus.

    Vervollständige den Satz. Die Nullhypothese...

    Bei der Produktion von Eiswaffeln gehen 1 % der Eiswaffeln kaputt. Ein Mitarbeiter der Fabrik Waffel meint, dass in letzter Zeit mehr Eiswaffeln kaputtgehen. Er möchte dies mit einem Hypothesentest überprüfen.Wähl die richtige Nullhypothese für diesen Hypothesentest aus.

    Weiter
    1
    Über StudySmarter

    StudySmarter ist ein weltweit anerkanntes Bildungstechnologie-Unternehmen, das eine ganzheitliche Lernplattform für Schüler und Studenten aller Altersstufen und Bildungsniveaus bietet. Unsere Plattform unterstützt das Lernen in einer breiten Palette von Fächern, einschließlich MINT, Sozialwissenschaften und Sprachen, und hilft den Schülern auch, weltweit verschiedene Tests und Prüfungen wie GCSE, A Level, SAT, ACT, Abitur und mehr erfolgreich zu meistern. Wir bieten eine umfangreiche Bibliothek von Lernmaterialien, einschließlich interaktiver Karteikarten, umfassender Lehrbuchlösungen und detaillierter Erklärungen. Die fortschrittliche Technologie und Werkzeuge, die wir zur Verfügung stellen, helfen Schülern, ihre eigenen Lernmaterialien zu erstellen. Die Inhalte von StudySmarter sind nicht nur von Experten geprüft, sondern werden auch regelmäßig aktualisiert, um Genauigkeit und Relevanz zu gewährleisten.

    Erfahre mehr
    StudySmarter Redaktionsteam

    Team Hypothesentest Lehrer

    • 13 Minuten Lesezeit
    • Geprüft vom StudySmarter Redaktionsteam
    Erklärung speichern

    Lerne jederzeit. Lerne überall. Auf allen Geräten.

    Kostenfrei loslegen

    Melde dich an für Notizen & Bearbeitung. 100% for free.

    Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!

    Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.

    • Karteikarten & Quizze
    • KI-Lernassistent
    • Lernplaner
    • Probeklausuren
    • Intelligente Notizen
    Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!