StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
Americas
Europe
"Was wird wahrscheinlich passieren?" ist eine Frage, auf die die Stochastik Antworten bietet.
Entdecke über 50 Millionen kostenlose Lernmaterialien in unserer App.
Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmelden"Was wird wahrscheinlich passieren?" ist eine Frage, auf die die Stochastik Antworten bietet.
Wenn Du auf ein Date gehst und nicht weißt, wie groß deine Verabredung ist, kannst Du anhand der statistischen Verteilung der Körpergröße die minimale und maximale Größe abschätzen. Alle zwischen diesen beiden Werten liegenden Körpergrößen sind Dein "Konfidenzintervall".
Das Konfidenzintervall wird dann gebraucht, wenn du einen wahrscheinlichen Parameter (z. B. Mittelwert der Körpergröße) aus einem großen Datensatz (alle Körpergrößen einer Zielgruppe) anhand mehrerer Stichproben abschätzen möchtest. Wie wahrscheinlich dieser geschätzte Mittelwert sein soll, bestimmst Du selbst.
Das Konfidenzintervall (oder auch Vertrauensintervall) ist die Abschätzung eines Intervalls, in der ein festgelegter Parameter zu einer festgelegten Wahrscheinlichkeit (Konfidenzniveau) liegen soll.
Es ist nicht das Intervall, in denen der Parameter mit der gegebenen Wahrscheinlichkeit liegt, sondern das Intervall, welches sich aus dem Schätzverfahren ergibt.
Das Konfidenzniveau ist eine wichtige Vorgabe, mit der Du festlegen kannst, wie genau oder wie tolerant Dein ausgerechnetes Konfidenzintervall zum Schluss ist.
Die Wahrscheinlichkeit, dass sich der festgelegte Parameter im bestimmten Konfidenzintervall befindet, heißt Konfidenzniveau (oder auch Überdeckungswahrscheinlichkeit oder Vertrauenswahrscheinlichkeit).
Das Konfidenzniveau wird im Vorfeld bestimmt und gibt dann an, wie tolerant Dein Intervall ist. Wenn die Wahrscheinlichkeit eines Treffers hoch sein soll, muss das Intervall entsprechend breit werden.
Möchtest Du, dass die Wahrscheinlichkeit, dass die korrekte mittlere Körpergröße in 19 von 20 Fällen im Konfidenzintervall liegt, ist das Konfidenzniveau 95 % .
Natürlich kann es passieren, dass die 95 % eben nicht eintreffen und Du Dich eben bei deiner Einschätzung der wahrscheinlichen Körpergröße irrst. Die Wahrscheinlichkeit dafür hat auch einen Namen.
Die Irrtumswahrscheinlichkeit ist die Wahrscheinlichkeit, mit der der festgelegte Parameter sich nicht im Konfidenzintervall befindet.
Diese ergibt sich dann einfach aus der Differenz des Konfidenzniveaus mit den maximal möglichen 100 %.
Die Irrtumswahrscheinlichkeit unseres Beispiels liegt bei 5 %.
Die Wahrscheinlichkeit, dass der gesuchte Parameter zwischen den orangenen Strichen liegt, heißt Konfidenzniveau. Die Wahrscheinlichkeit, dass er im Bereich außerhalb ist, wird durch die Irrtumswahrscheinlichkeit bestimmt.
Das Konfidenzintervall wird durch zwei Werte begrenzt. Links ist die Untergrenze und rechts ist die Obergrenze.
Wenn man annimmt, dass die Körpergröße der möglichen Verabredungen gleichverteilt ist (was realistisch nicht der Fall ist), ist die Wahrscheinlichkeit, dass der wahre Wert unter der Untergrenze liegt, 2,5 % und dass er oberhalb der Obergrenze liegt, ebenso 2,5 %. Damit ergibt sich für die übrige Gesamtwahrscheinlichkeit wieder95 %.
Wenn Du im Speziellen ein Konfidenzintervall für den Mittelwert berechnen möchtest, ergibt sich folgende Formel
Dabei ergibt sich der z-Wert aus dem Konfidenzniveau und der dazugehörigen Tabelle.
Standardabweichung σ und Stichprobengröße n ergeben sich aus der genommenen Stichprobe.
Du musst das Konfidenzintervall nicht um einen Mittelwert bestimmen, sondern kannst es um jede beliebige durchgeführte Punktschätzung durchführen. Dann setzt Du den geschätzten Punkt anstatt σ ein.
Wobei das "+" dann die Obergrenze und das "-" dann die Untergrenze ergibt.
Dabei sind:
Am häufigsten möchte man ein Konfidenzintervall von 95 % um den gesuchten Wert. Wenn man dieses dann wie oben um den Mittelwert bestimmen möchte, ergibt sich für das und damit für das gesamte Konfidenzintervall:
Beginnst Du Deine Suche mit einer Verteilung, die nicht (wie eine Normalverteilung) kontinuierlich ist, sondern nur aus einer Menge an einzelnen Bernoulli-Experimenten besteht, ist bei wenigen Stichproben die Rechnung von oben nicht anwendbar.
Bernoulli-Experimente sind Tests, die nur zwei Optionen zulassen: ja-nein, funktionsfähig-kaputt, gleich-ungleich.
Betrachtest Du nicht die genaue Körpergröße der Verabredung, sondern nur die Frage "Wird sie größer sein als ich?" (oder kleiner/gleich groß), dann hast Du keine durchgehende Verteilung mehr, die viele Optionen bietet, sondern nur noch zwei Optionen. "Ja" oder "Nein".
Bei sehr vielen Stichproben geht die Binomialverteilung in die Normalverteilung über und Du kannst die gleichen Formeln darauf anwenden.
In den meisten Fällen, wenn Du ein konkretes Konfidenzintervall bestimmen sollst und Du nicht weißt, in welcher Verteilung die Messwerte gegeben sind, ist die Normalverteilung gemeint.
Als Erstes schaust Du nach, ob Du alle Werte hast, die Du benötigst und welche Du noch bestimmen oder herausfinden musst.
Ist der Mittelwert nicht gegeben, musst Du ihn selbst bestimmen. Wenn Du zum Beispiel einen sehr großen Datensatz hast, nimmst Du eine (zufällige) Stichprobe und mittelst diese. Notiere Dir die Größe der Stichprobe n. Diese wird für die Standardabweichung im letzten Schritt benötigt. Ein möglichst guter Mittelwert ist besonders wichtig, denn um diesen baut sich Dein Konfidenzintervall auf. Er ist immer genau in der Mitte. Ist dieser Wert falsch, ist das Intervall falsch.
Den Mittelwert der Stichprobenwerte ermittelst Du, indem Du die Summe der Einzelwerte durch ihre Anzahl dividierst.
Deine bisherigen Erfahrungen der Körpergröße Deiner Dates waren 1,63 m; 1,58 m; 1,82 m; 1,77 m
Damit ergibt sich aus:
ein Mittelwert von .
Wie Du an die Standardabweichung σ kommst, kannst Du hier noch mal herausfinden.
Um die Standardabweichung zu berechnen, ziehst Du die Wurzel aus der Varianz. Die Varianz σ2 ist definiert als die Summe der Quadrate der Differenzen zwischen Mittelwert und den einzelnen Werten der Messungen xi (hier die Werte der Stichprobe), geteilt durch die Anzahl der Beobachtungen (hier die Stichprobengröße) n minus 1.
Damit ergibt sich für die Beispielgrößen deiner Stichprobe eine Varianz aus
Die Varianz ist die Summe der Quadrate der Differenzen zwischen all deinen Stichprobenwerten geteilt durch die Anzahl der Stichprobenwerte minus 1. Und daraus die Wurzel ergibt die gesuchte Standardabweichung.
Ziehst Du aus der oben ermittelten Varianz die Wurzel, erhältst Du gerundet die Standardabweichung
Um den z-Wert zu bestimmen, musst Du die Verteilung, die Du momentan hast, mit dem gewünschten Konfidenzniveau in die Standardnormalverteilung transformieren.
Dafür gibt es Tabellen, aus denen Du diesen Wert zum gewünschten Niveau ablesen kannst.
Für das Eingangsbeispiel von 95 % ergibt sich dadurch, dass du auf beiden Seiten jeweils 2,5 % abziehst, der z-Wert .
Würdest du nur eine Sicherheit von 90 % anstreben, würde sich aus 2×5 % für 0,95 der z-Wert ergeben.
Für die Bestimmung des Konfidenzintervalls bei einer Normalverteilung benötigst Du für das Einsetzen in die finale Formel von oben:
Der z-Wert stammt aus der Tabelle für z-Werte für das jeweilige Konfidenzintervall.
Bei 95 % (also jeweils 2,5 unter der Untergrenze und 2,5 % oberhalb der Obergrenze!) kannst Du aus der zugehörigen Tabelle ablesen.
Nun hast Du alle benötigten Werte bestimmt und kannst diese in die Formel einsetzen:
Dann bleibt noch die Frage, was es mit dem Plus-Minus auf sich hat und wie aus einer Formel ein Intervall wird. Glücklicherweise kannst Du beide Fragen mit der gleichen Antwort lösen.
Ein Intervall hat eine Obergrenze, die sich aus der Formel mit dem Plus und eine Untergrenze, die sich aus der Formel mit dem Minus ergibt.
Also konkret:
Um jetzt also das Beispiel zu einem Ende zu führen, setzen wir alle Werte ein:
und erhalten für Unter- und Obergrenze des Konfidenzintervalls:
Wenn Du Dich also beim Ausschau halten nach dem Date nur zu 5 % irren möchtest, kannst Du alle Personen oberhalb von 1,81 m und unterhalb von 1,69 m ignorieren und nur diejenigen mit der Körpergröße im Konfidenzintervall suchen.
Möchtest Du das Konfidenzintervall in Excel berechnen, kannst Du das auch über die finale Formel machen.
So schreibst Du einfach in die Zelle, in der die untere Grenze stehen soll:
=[Zelle des Mittelwertes]-[z-Wert deines Konfidenzniveaus]*([Zelle mit der Standardabweichung]/SQRT([Zelle der Probenanzahl]))
Abbildung 2: Konfidenzintervall in Excel
In Abbildung 2 siehst Du, wie das Ganze mit konkreten Werten aussieht.
Wenn Du jetzt die ermittelten Werte interpretieren möchtest, ist es hilfreich, noch mal einen Blick auf die Formel für das Konfidenzintervall und den Einfluss der darin enthaltenen Parameter zu werfen. Dabei achtest Du vorwiegend darauf, welche Werte rechts vom oberhalb und unterhalb des Bruchstrichs stehen.
Der Mittelwert (oder allgemeiner: Deine Punktschätzung), befindet sich immer in der Mitte, genau zwischen den beiden Grenzen. Der gesamte Teil der Formel rechts vom zeigt, wie breit das Intervall sein wird.
Sind Standardabweichung σ und z-Wert groß und n klein, wird das Konfidenzintervall sehr breit und ungenau, enthält aber umso sicherer den korrekten Wert.
Woher kommen die Werte also und wie genau kann man sie beeinflussen?
Der z-Wert kommt vom angestrebten Konfidenzniveau. Wenn Du Dir ganz sicher sein willst (99 % führt zu ), dass der korrekte Mittelwert im angegebenen Intervall ist, muss das Intervall zwangsweise sehr groß werden, da der z-Wert mit dem Konfidenz-Niveau größer wird. Ein niedrigeres Konfidenzniveau (80 % hat ) sorgt entsprechend für ein schmaleres Intervall.
Die Standardabweichung (bzw. die Varianz) hängt vom Datensatz im Allgemeinen bzw. von der genommenen Stichprobe im Speziellen ab. Darauf hast Du also keinen so großen Einfluss. Hier ist auch klar, dass, wenn die Werte sehr stark schwanken (hohe Standardabweichung) auch die Verteilung und damit das Konfidenzintervall breiter werden muss.
Auf das n hast Du wieder insofern Einfluss, wenn Du einen gesamten, großen Datensatz da hast, aus dem Du selbst eine Stichprobe entnehmen kannst. Da das n unter dem Bruchstrich steht, kannst Du hier also mit mehr aufgenommenen Werten (größere Stichprobe) zu einem, kleineren Konfidenzintervall und damit einer höheren Wahrscheinlichkeit den korrekten Wert zu enthalten, kommen.
Parameteränderung | Folge |
z-Wert/Konfidenzniveau werden größer | Konfidenzintervall wird breiter |
Standardabweichung σ wird größer | Konfidenzintervall wird breiter |
Stichprobe n wird kleiner | Konfidenzintervall wird breiter |
z-Wert/Konfidenzniveau werden kleiner | Konfidenzintervall wird schmaler |
Standardabweichung σ wird kleiner | Konfidenzintervall wird schmaler |
Stichprobe n wird größer | Konfidenzintervall wird schmaler |
Hier siehst Du ein paar Beispielrechnungen, auf die Du treffen könntest.
Die erste Aufgabe ist eine Einfache zum Bestimmen und Einsetzen der korrekten Werte in die Formel.
Aufgabe 1
Du hast einen sehr großen Datensatz mit einem Mittelwert von und berechnest eine Standardabweichung bei 200 von diesem Datensatz genommenen Daten. Von welcher Unter- bis zu welcher Obergrenze geht das Konfidenzintervall, in dem der Mittelwert zu 80 % (z-Wert 1,282) liegt?
Wenn Du in die Tabelle für die z-Werte zu der Standardnormalverteilung schaust, wird Dir auffallen, dass zu 0,9 gehört. Die fehlenden 0,1 sind auf jeder Seite einmal vertreten.
Gegeben | Gesucht | |
Mittelwert z-Wert Standardabweichung Stichprobengröße | Konfidenzintervall KI |
Bei einem Blick in die Formel für das Konfidenzintervall:
fällt auf, dass alle Werte rechts vom Gleichheitszeiten gegeben sind. Du kannst diese direkt in Unter- und Obergrenze einsetzen:
Anhand dieses Ergebnisses kannst Du auch sehen, wie sehr sich eine große Stichprobe und eine hohe Fehlertoleranz (niedrige angestrebte Treffsicherheit in Prozent) zu einem verhältnismäßig schmalen Konfidenzintervall führen. Wir können mit relativ großer Sicherheit sagen, dass der Mittelwert zwischen den beiden ausgerechneten Werten liegt.
In der zweiten Aufgabe kannst Du selbst aus einem Datensatz die Ausgangswerte ermitteln:
Aufgabe 2
Bestimme Unter- und Obergrenze für das 95 Konfidenzintervall folgender vier Messdaten einer Stichprobe:
Lösung
Fang beispielsweise mit dem Mittelwert an. Die Definition für den Mittelwert lautet:
Die xi hast Du oben alle einzeln gegeben und kannst einfach alle vier davon aufaddieren und einsetzen:
Das z ergibt sich aus der gewünschten Größe für das Konfidenzintervall und ist laut Tabelle 1,96.
Die Standardabweichung σ ergibt sich wie oben gezeigt aus der Varianz σ2.
Die gegebenen Werte eingesetzt in die Formel für die Varianz σ2 ergeben:
Die Standardabweichung kannst Du dann aus der Varianz (oder direkt mit der Wurzel in der Formel berechnen:
Und mit der Stichprobengröße hast Du dann die vollständigen Formeln für Unter- und Obergrenze des Intervalls:
Die letzte Aufgabe ist eine Sachaufgabe, in der Du genau überlegen musst, welche vorkommende Zahl für welchen Teil im Term gilt:
Aufgabe 3
In einer Fabrik werden Nüsse nach Gewicht eingepackt. Der Leiter möchte, dass die angestrebte Gesamtzahl von 100 Nüssen pro Packung am Ende aber höchstens um 10 schwankt und dass höchstens 1 % der Verpackungen zu viele oder zu wenige Nüsse enthalten. Wie hoch darf die Standardabweichung bei 10 Stichproben höchstens sein?
Lösung
Nimm zuerst die Aufgabenstellung genau auseinander. Die angestrebte Gesamtzahl ist der Wert, um den man sich bewegt. Das ist also der Mittelwert .
Dieser soll um 10 schwanken, damit geht er von 90 bis 110. Alles, was da rausfällt, ist nicht im angestrebten Intervall. Also müssen das Unter- und Obergrenze für das Konfidenzintervall sein. Bei 1 % maximaler Fehlerquote haben wir in der Tabelle rechts und links jeweils einen halben Prozent, der fehlen darf. Das heißt, jeweils für Ober- und Untergrenze ergibt sich ein z-Wert von .
n ist die Stichprobenanzahl und sie liegt bei 30.
Gegeben | Gesucht | |
Mittelwert z-Wert Untergrenze Obergrenze Stichprobengröße | Standardabweichung |
Beim Blick auf die zentrale Formel, zum Beispiel konkret für die Untergrenze,
wird klar, dass nur ein Wert (hier σ) gesucht wird und die anderen alle gegeben sind. Also musst Du nur die Formel umstellen, einsetzen und bist fertig!
Addiere also zuerst den Term mit dem gesuchten σ auf beide Seiten und subtrahiere die Untergrenze. Dann hast Du auf der linken Seite nur noch einen Bruch und ein Produkt um Deinen gesuchten Wert.
Jetzt musst Du nur noch durch z dividieren und mit multiplizieren.
Und jetzt, da Du eine finale Formel für den gesuchten Wert hast, musst Du nur noch einsetzen:
Und das ergibt dann exakt und gerundet für die erlaubte Standardabweichung jeweils:
Du kannst als Übung für das Umstellen der Formel das Ganze nochmal für die Obergrenze durchführen. Du wirst auf die gleiche Standardabweichung kommen, da Du dann nicht Untergrenze von Mittelwert, sondern Mittelwert von Obergrenze abziehst und bei beiden die Differenz 10 ist.
: Mittelwert
Das Konfidenzintervall wird breiter, wenn die Standardabweichung der Stichprobe größer oder die Größe der Stichprobe kleiner wird. Außerdem wird es breiter, wenn das Konfidenzniveau, also die angestrebte Genauigkeit, und damit der z-Wert, größer wird.
Nein. Ein Intervall ist ein Abstand zwischen einer unteren und einer oberen Grenze. Abstände sind immer größer Null.
Das Konfidenzintervall (oder auch Vertrauensintervall) ist die Abschätzung eines Intervalls, in der ein festgelegter Parameter zu einer festgelegten Wahrscheinlichkeit (Konfidenzniveau) liegen soll.
Karteikarten in Konfidenzintervall7
Lerne jetztWas bedeutet "95 Prozent Konfidenzintervall"?
Wie groß ist der z-Wert?
Was sagt mir das Konfidenzintervall?
Das Konfidenzintervall (oder auch Vertrauensintervall) ist die Abschätzung eines Intervalls, in der ein festgelegter Parameter zu einer festgelegten Wahrscheinlichkeit (Konfidenzniveau) liegen soll.
Wann wird das Konfidenzintervall schmaler?
Wenn die Größe der Stichprobe größer wird.
Warum schaut man bei 90% Konfidenzniveau in der Standardnormalverteilungstabelle nach 0,95 und nicht nach 0,9?
Weil bei einer Normalverteilung rechts UND links jeweils 5% und damit zusammen 10% zu den vollständigen 100% fehlen.
100%-10%=90%
Da die Werte in der Tabelle für die z-Werte aber nur für eine Seite gelten, greift man auf die z-Werte 95% zurück. Man nimmt quasi die Prozente von 0%-5% und die von 95% bis 100% heraus, um in der Summe von 5% bis 95% die benötigten 90% Wahrscheinlichkeit abzudecken.
(Würde man die Werte für 0,9 nehmen, würde man 0-10% und 90-100% wegschneiden und damit das Konfidenzniveau bei 80% ausrechnen. 100%-10%-10%=80%)
Warum sorgt eine hohe Standardabweichung für ein breiteres Konfidenzintervall?
Mathematisch formuliert: Weil es oberhalb es Bruchstriches ist.
Inhaltlich, weil eine hohe Standardabweichung aussagt, dass die Werte sehr stark auseinander (weg vom Mittelpunkt) streuen. Damit wird bei einer hohen Standardabweichung eine genaue Aussage mittels Konfidenzintervall schwerer.
Wie groß ist das Konfidenzintervall bei einem Mittelwert von x=0; einem z-Wert von z=2 und einer Standardabweichung von 3 bei einer Stichprobengröße n=9?
Das Intervall geht von der Untergrenze -2 bis zur Obergrenze 2
Du hast bereits ein Konto? Anmelden
Open in AppDie erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.
Melde dich an für Notizen & Bearbeitung. 100% for free.
Speichere Erklärungen in deinem persönlichen Bereich und greife jederzeit und überall auf sie zu!
Mit E-Mail registrieren Mit Apple registrierenDurch deine Registrierung stimmst du den AGBs und der Datenschutzerklärung von StudySmarter zu.
Du hast schon einen Account? Anmelden