StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
Americas
Europe
Neben den Lagemaßen sind auch die Streuungsmaße wichtige Kennzahlen in der deskriptiven Statistik. Du hast noch keine konkrete Vorstellung, was du dir unter den Streuungsmaßen in der Statistik vorstellen sollst? Dann ist dieser Artikel genau der Richtige für dich!Es gibt verschiedene Streuungsmaße in der deskriptiven Statistik! Die drei wichtigsten Streuungsmaße in der Statistik sind die folgenden:SpannweiteVarianzStandardabweichungJedes der oben genannten Streuungsmaße hat…
Entdecke über 200 Millionen kostenlose Materialien in unserer App
Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmeldenNeben den Lagemaßen sind auch die Streuungsmaße wichtige Kennzahlen in der deskriptiven Statistik. Du hast noch keine konkrete Vorstellung, was du dir unter den Streuungsmaßen in der Statistik vorstellen sollst? Dann ist dieser Artikel genau der Richtige für dich!
Es gibt verschiedene Streuungsmaße in der deskriptiven Statistik!
Die drei wichtigsten Streuungsmaße in der Statistik sind die folgenden:
Jedes der oben genannten Streuungsmaße hat Vorteile und Nachteile. Deshalb muss vom Kontext und den Eigenschaften der Verteilung abhängig gemacht werden, bei welchem Streuungsmaß eine Bestimmung in diesem Fall überhaupt sinnvoll ist.
Die Streuungsmaße – auch Dispersionsmaße genannt – sind Kennzahlen in der Statistik, die die Streuung von Verteilungen um das Zentrum der Verteilung angeben.
Insbesondere bei großen Datenmengen sind die Streuungsmaße hilfreich, um Informationen zu bündeln. Dabei werden die Daten zu einem Wert zusammengefasst, der über die Streuung um das Zentrum der Verteilung informieren soll.
Alle Streuungsmaße geben die Streuung der Verteilung um ihr Zentrum wieder. Weil die Streuungsmaße allerdings auf unterschiedlichen Konzepten beruhen und daher unterschiedlich bestimmt werden, stimmen die Werte der Kennzahlen nicht überein.
Um eine vollständige Aussage über das Streuungsverhalten einer Verteilung machen zu können, ist eine kombinierte Betrachtung der verschiedenen Streuungsmaße wichtig.
In der deskriptiven Statistik werden neben den Streuungsmaßen auch Lagemaße verwendet. Zu den wichtigsten Lagemaßen der Statistik gehören das arithmetische Mittel, der Median, der Modus und die Quartile.
Worin die Gemeinsamkeiten zwischen Lagemaßen und Streuungsmaßen liegen und worin sich die beiden Kennzahlenarten der deskriptiven Statistik unterscheiden, erfährst du in diesem Abschnitt.
Die Lagemaße und die Streuungsmaße sind beides Arten von Kennzahlen in der deskriptiven Statistik. Eine der Gemeinsamkeiten von Lagemaßen und Streuungsmaßen liegt darin, dass sie verwendet werden, um die Informationen aus großen Datensätzen zusammenzufassen und übersichtlich darzustellen. Im Zuge dessen fassen sie die Daten eines Datensatzes jeweils zu einem Kennwert zusammen, der repräsentativ für den gesamten Datensatz steht.
Der Unterschied zwischen Lagemaßen und Streuungsmaßen liegt darin, welche Art von Informationen sie über einen Datensatz wiedergeben.
Die Lagemaße, die auch Maße der zentralen Tendenz genannt werden, geben Aufschluss darüber, wo das Zentrum der Verteilung liegt.
Im Gegensatz dazu informieren die Streuungsmaße darüber, wie die Werte des Datensatzes um das Zentrum der Verteilung streuen. Die Streuungsmaße geben die Variation der Werte um das Zentrum der Verteilung wieder.
Die Informationen zum Thema Lagemaße sind dir an dieser Stelle zu knapp zusammengefasst? Dann wird dir unser Artikel, der das Thema Lagemaße in aller Ausführlichkeit behandelt, sicher weiterhelfen. Schau ihn dir doch im Anschluss an diesen Artikel einmal an.
Wie du bereits zu Beginn dieses Artikels erfahren hast, gibt es verschiedene Streuungsmaße in der Statistik. Das Ziel dieses Artikels ist es, dir einen groben Überblick über die wichtigsten Streuungsmaße zu geben. Für jedes der Streuungsmaße haben wir außerdem einen eigenen Artikel verfasst. Wenn du also mehr über eines der vorgestellten Streuungsmaße wissen möchtest, ist es sehr zu empfehlen, dir im Anschluss an diesen Artikel den dazugehörigen Artikel zu dem spezifischen Streuungsmaß ebenfalls anzuschauen.
Die Spannweite R gibt den Abstand an, der zwischen dem kleinsten und dem größten Wert ( und
) einer Verteilung liegt. Die Formel zur Berechnung der Spannweite sieht deshalb folgendermaßen aus:
Die Spannweite wird im Englischen auch als Range bezeichnet und hat daher in der Mathematik die Abkürzung R.
Der Nachteil der Verwendung der Spannweite als Streuungsmaß liegt darin, dass die Spannweite nicht robust gegenüber Ausreißern ist. Das bedeutet, dass wenn ein Wert stark nach oben oder unten von den anderen Werten der Verteilung abweicht, die Spannweite davon stark beeinflusst wird.
Du fragst deine 6 Freundinnen, wie häufig sie bisher mit einem Flugzeug geflogen sind.
Ihre Antworten lauten:
7x, 10x, 8x, 30x, 2x und 9x.
Berechne die Spannweite R für dieses Szenario.
Um die Spannweite des Datensatzes zu berechnen, bestimmst du zunächst das Minimum und das Maximum der Datenreihe.
Eine Freundin von dir ist nur zwei Mal geflogen. Für das Minimum der Datenreihe gilt daher: .
Eine andere Freundin ist schon dreißig Mal geflogen. Das Maximum beträgt also .
Anschließend bildest du die Differenz zwischen dem Maximum und dem Minimum der Datenreihe:
Die Spannweite beträgt in diesem Beispiel den Wert 28.
Du möchtest mehr über die Spannweite als Streuungsmaß in der Statistik wissen? Dafür haben wir einen eigenen Artikel nur über das Thema der Spannweite geschrieben. Schau doch dort mal rein!
Die Varianz ist die quadrierte Abweichung der Werte der Verteilung von ihrem arithmetischen Mittel, die anschließend durch die Anzahl der Werte geteilt wird. Sie gehört ebenfalls zu den Streuungsmaßen in der Statistik.
Die Formel zur Berechnung der Varianz lautet folgendermaßen:
Dabei ist n die Anzahl der Werte in der Datenreihe, das arithmetische Mittel und
die einzelnen Werte der Datenreihe.
Der Nachteil der Verwendung der Varianz als Streuungsmaß liegt darin, dass sie nicht die gleiche Einheit hat wie die Ausgangsdaten. Das liegt daran, dass die Daten zur Berechnung der Varianz unter anderem quadriert werden müssen. Die Varianz ist deshalb nur schwer zu interpretieren.
Um diesen Nachteil der Varianz zu beheben, wird häufig die positive Wurzel der Varianz gezogen. Dabei handelt es sich um ein anderes Streuungsmaß: die Standardabweichung.
Die Varianz und die Standardabweichung stehen in einem engen Zusammenhang.
Wenn du eines der beiden Streuungsmaße berechnen möchtest, und dafür das jeweils andere Streuungsmaß gegeben hast, ist die Berechnung gar nicht schwer:
Es gilt:
Die Standardabweichung s ist die positive Wurzel der Varianz :
Und daraus resultiert:
Die Varianz ist die quadrierte Standardabweichung s:
Nun möchtest du die Varianz der Anzahl an Flügen deiner Freundinnen berechnen.
Zur Erinnerung: Die Antworten deiner Freundinnen lauteten:
7x, 10x, 8x, 30x, 2x und 9x
Dazu bestimmst du zunächst das arithmetische Mittel :
Mithilfe des arithmetischen Mittels kannst du nun die Varianz berechnen:
Die Varianz beträgt . Die Einheit ist in diesem Fall theoretisch
. Anhand dieses Beispiels siehst du, dass die Varianz schwierig zu interpretieren ist.
Du interessierst dich für das Thema Varianz in der Statistik, aber es wurde dir in diesem Abschnitt nicht ausführlich genug erklärt? Kein Problem, dem Thema Varianz haben wir bereits einen ganzen Artikel gewidmet, in den du bei Interesse gerne einen Blick werfen kannst.
Die Standardabweichung s gibt an, wie weit die Werte der Verteilung im Schnitt vom arithmetischen Mittel der Verteilung abweichen.
Die Standardabweichung ist die positive Wurzel der Varianz.
Die Formel für die Standardabweichung lautet:
Der Vorteil der Standardabweichung gegenüber der Varianz liegt darin, dass die Wirkung des Quadrierens durch das Ziehen der Wurzel aufgehoben wird. Daher ist die Standardabweichung besser interpretierbar als die Varianz.
Um besser zu verstehen, warum die Standardabweichung gegenüber der Varianz einen Vorteil hat, ist es hilfreich, sich noch einmal die Formel für die Varianz anzuschauen:
Im Zähler wird von den einzelnen Werten zuerst das arithmetische Mittel subtrahiert, das Ergebnis dann quadriert und anschließend für alle x-Werte aufsummiert. Dabei werden allerdings nicht nur mit den Werten des Datensatzes alleine gerechnet, sondern immer mit ihren Einheiten.
Durch das Quadrieren wird daher auch die Einheit quadriert. So entsteht aus zum Beispiel
und aus
wird
. Wenn du dich jetzt fragst, was
sein sollen, hast du das Problem der Varianz verstanden. Sie ist sehr schwer zu interpretieren.
Dieses Problem wird durch die Berechnung der Standardabweichung gelöst.
Für den Zusammenhang zwischen Standardabweichung und Varianz gilt: .
Die Standardabweichung ist also die positive Wurzel der Varianz. Durch diese Rechnung wird nicht nur die Wurzel des Wertes der Varianz gezogen, sondern auch die Wurzel der Einheit.
Durch die Berechnung der Standardabweichung aus der Varianz haben die Werte daher wieder die Ursprungseinheit der Variablen, das heißt aus wird wieder
und aus
wird wieder
.
Mit dieser Einheit kannst du sicher viel mehr anfangen!
Wenn du nun die Standardabweichung der Anzahl an Flügen deiner Freundinnen berechnen möchtest, gehst du folgendermaßen vor:
Zur Erinnerung: Die Varianz beträgt in diesem Beispiel .
Wenn du nun die Standardabweichung ermitteln möchtest, ziehst du einfach die positive
Wurzel von :
Die Standardabweichung s beträgt 8,869. Das bedeutet, dass die Anzahl der Flüge deiner Freundinnen im Schnitt etwa 9 Flüge vom arithmetischen Mittel mit 11 Flügen abweicht.
Die Standardabweichung ist ein sehr wichtiges Thema in der Statistik, das dir im Laufe des Mathematikunterrichts immer wieder begegnen wird. Deshalb lohnt es sich dieses Thema einmal in voller Tiefe zu verstehen.
Um dir dabei zu helfen, haben wir gleich zwei Artikel zum Thema Standardabweichung verfasst: einen Artikel mit allen allgemeinen Informationen über die Standardabweichung und einen Artikel, der sich ausschließlich mit der Thematik "Standardabweichung berechnen" auseinandersetzt.
Die Streuung sagt aus, wie sich die Werte einer Verteilung um das Zentrum der Verteilung verteilen. Ist die Streuung gering, so liegen die meisten Werte der Verteilung sehr nah am Zentrum, ist die Streuung jedoch stark, so liegen die Werte der Verteilung weiter vom Zentrum entfernt.
Die Streuungsmaße sind Kennzahlen in der Statistik, die angeben, wie die Daten einer Verteilung um das Zentrum der Verteilung streuen. Sie dienen der Zusammenfassung von Informationen.
Die wichtigsten Streuungsmaße sind die Spannweite, die Varianz und die Standardabweichung.
Ein Streuungsmaß ist eine Kennzahl in der Statistik, die angibt, wie die Daten einer Verteilung um das Zentrum der Verteilung streuen. Die wichtigsten Streuungsmaße der deskriptiven Statistik sind die Spannweite, die Varianz und die Standardabweichung.
Zu den wichtigsten Lagemaßen der Statistik gehören das arithmetische Mittel, der Median, der Modus und die Quartile.
Wie möchtest du den Inhalt lernen?
94% der StudySmarter Nutzer erzielen bessere Noten.
Jetzt anmelden94% der StudySmarter Nutzer erzielen bessere Noten.
Jetzt anmeldenWie möchtest du den Inhalt lernen?
Kostenloser mathe Spickzettel
Alles was du zu . wissen musst. Perfekt zusammengefasst, sodass du es dir leicht merken kannst!
Sei rechtzeitig vorbereitet für deine Prüfungen.
Teste dein Wissen mit spielerischen Quizzes.
Erstelle und finde Karteikarten in Rekordzeit.
Erstelle die schönsten Notizen schneller als je zuvor.
Hab all deine Lermaterialien an einem Ort.
Lade unzählige Dokumente hoch und habe sie immer dabei.
Kenne deine Schwächen und Stärken.
Ziele Setze dir individuelle Ziele und sammle Punkte.
Nie wieder prokrastinieren mit unseren Lernerinnerungen.
Sammle Punkte und erreiche neue Levels beim Lernen.
Lass dir Karteikarten automatisch erstellen.
Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.
Melde dich an für Notizen & Bearbeitung. 100% for free.