Login Anmelden

Select your language

Suggested languages for you:
StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
|
|

Produktregel Kombinatorik

Produktregel Kombinatorik

Die Produktregel der Kombinatorik hilft Dir zum Beispiel bei Deinem nächsten Besuch in einer Eisdiele. Warum? Hast Du die Wahl zwischen verschiedenen Eissorten, Soßen und Garnierungen, kannst Du mit einer Formel herausfinden, wie viele Möglichkeiten es gibt, die Speisen zu kombinieren. Was die Produktregel der Kombinatorik einfach erklärt ist, welche mathematische Definition dahintersteckt und wie Du sie in Übungen anwenden kannst, erfährst Du in dieser Erklärung.

Produktregel Kombinatorik einfach erklärt

In einer Eisdiele werden zwölf Eissorten, vier Soßen und vier Garnierungen angeboten. Allgemein lassen sich mehrstufige Prozesse anhand eines Baumdiagramms optisch darstellen. Wie kann so etwas in diesem Fall aussehen?

In der Erklärung „Baumdiagramm“ kannst Du alles rund um das Thema Darstellung von mehrstufigen Zufallsexperimenten noch einmal nachlesen.

\(1.\) Stufe: \(12\) Eissorten (z. B. Vanille)

\(2.\) Stufe: \(4\) Soßen (z. B. Karamell)

\(3.\) Stufe: \(4\) Garnituren (z. B. Nüsse)

In der ersten Stufe befinden sich \(12\) Eissorten und daher beginnt das Baumdiagramm schon mit \(12\) Verzweigungen. Auch in der zweiten Stufe werden jedem der \(12\) Eissorten wiederum \(4\) Soßen zugeteilt. In der dritten Stufe kommen noch einmal jeweils für jede Soße die \(4\) Garnituren dazu.

Verfolgst Du einen Pfad (grün), so kannst Du Dir zum Beispiel aus all diesen Möglichkeiten ein Vanilleeis mit Karamellsoße und Nüssen aussuchen.

Ein solches Ergebnis mit mehreren Elementen in einer bestimmten Reihenfolge wird als \(k\)-Tupel bezeichnet.

\begin{align}3-Tupel:\, (Vanille,\,Karamell,\,Nüsse)\end{align}

Wie kannst Du aber herausfinden, wie viele Möglichkeiten es insgesamt gibt, die Speisen in der Eisdiele zu kombinieren?

In einem Baumdiagramm müsstest Du dazu die Anzahl aller Pfade bestimmen. Aber so viele Pfade einzeichnen? Gibt es denn eine Alternative dazu? Ja, mit der Produktregel der Kombinatorik.

Die Anzahl der Möglichkeiten (\(k\)-Tupel) über das allgemeine Zählprinzip bzw. die Produktregel der Kombinatorik kannst Du berechnen, indem die Anzahlen der Elemente in jeder Stufe bestimmt und anschließend multipliziert werden:

\begin{align}{\color{#1478C8}Eis}\cdot{\color{#00DCB4}Soße}\cdot{\color{#FA3273}Garnitur}&=Anzahl\,Möglichkeiten \\ \\{\color{#1478C8}12}\cdot{\color{#00DCB4}4}\cdot{\color{#FA3273}4}&=192\end{align}

Die Berechnung liefert \(192\) Ergebnismöglichkeiten.

Die Produktregel der Kombinatorik bietet sich demnach besonders bei einer hohen Anzahl an Elementen in den jeweiligen Stufen an, um die Darstellung des Prozesses im Baumdiagramm zu umgehen.

Produktregel Kombinatorik Definition

Mit dem allgemeinen Zählprinzip (Produktregel Kombinatorik) kannst Du also anhand einer Formel herausfinden, wie viele Möglichkeiten ein mehrstufiger Prozess liefert, wie zum Beispiel ein mehrstufiges Zufallsexperiment. Jede Stufe hat dabei eine gewisse Anzahl an Ergebnismöglichkeiten.

Produktregel Kombinatorik Formel

Allgemein gilt:

Die Anzahl der Möglichkeiten in einem \(k\)-stufigen Prozess berechnet sich nach der Produktregel der Kombinatorik durch:

\begin{align}n_1 \cdot n_2\, \cdot \, ... \, \cdot \, n_k\end{align}

Dabei steht \(n_k\) für die Anzahl der möglichen Ergebnisse in der \(k\)-ten Stufe.

Die Anzahl aller Möglichkeiten in einem \(k\)-stufigen Prozess wird auch die Anzahl der \(k\)-Tupel genannt.

In mancher Literatur findest Du auch eine alternative Schreibweise der Produktregel der Kombinatorik mit Mengen, wie Dir die folgende Vertiefung zeigt.

Das allgemeine Zählprinzip kann auch über Mengen angegeben werden. Jede Stufe hat dabei eine bestimmte Anzahl an Elementen, die in einer Menge \(M_k\) notiert werden. Die Mächtigkeit \(|M_k|\) gibt an, wie viele Elemente sich in dieser Menge \(M_k\) befinden.

Gegeben ist in der ersten Stufe eine Menge \(M_1\) und in der zweiten Stufe eine Menge \(M_2\).

\begin{align}M_1&=\{{\color{#1478C8}blau};\, {\color{#00DCB4}grün};\, {\color{#FA3273}rot}\} \hspace{1cm} &|M_1|&=3\\[0.1cm]M_2&=\{{\color{#8363E2}lila};\,{\color{#FFCD00}gelb}\} &|M_2|&=2 \end{align}

Die Anzahl der Ergebnismöglichkeiten berechnet sich hier durch:

\begin{align}|M_1| \cdot |M_2| = 3\cdot 2 = 6\end{align}

Allgemein gilt demnach:

Die Anzahl der Möglichkeiten in einem \(k\)-stufigen Prozess mit \(k\) endlichen Mengen berechnet sich nach der Produktregel der Kombinatorik durch:

\begin{align}|M_1| \cdot |M_2|\, \cdot \, ... \, \cdot \, |M_k|\end{align}

Dabei steht \(|M_k|\) für Mächtigkeit der \(k\)-ten Menge.

Nicht immer sind in einem Entscheidungsprozess alle Entscheidungsmöglichkeiten relevant. So kann es beispielsweise sein, dass die Reihenfolge der Objekte keine Rolle spielt, wie Du im nächsten Kapitel lesen kannst.

Produktregel Kombinatorik Interpretation

Mit der Produktregel der Kombinatorik bestimmst Du die Anzahl aller Möglichkeiten in einem mehrstufigen Prozess. Hierbei spielt die Reihenfolge der Objekte eine Rolle, da jede Anordnung entlang der Pfade im Baumdiagramm eine Möglichkeit darstellt. Es gibt aber auch Abzählmethoden, bei denen die Reihenfolge keine Rolle spielt.

Aus dem allgemeinen Zählprinzip lassen sich Formeln für verschiedene Abzählmethoden ableiten, darunter

  • Permutationen,
  • Kombinationen (ungeordnete Stichprobe) und
  • Variationen (geordnete Stichprobe).

Die nachfolgende Tabelle gibt Dir dazu einen kleinen Überblick über die jeweiligen Formeln, wobei \(n\) für die Anzahl der gesamten Elemente steht und \(k\) für eine Stichprobe mit \(k\) Elementen.

Diese Formeln sollen Dir lediglich einen kurzen Überblick zeigen. Welche Bedeutung sie haben oder wie Du sie nutzt, musst Du hier noch nicht wissen.

ohne Wiederholungmit Wiederholung
Permutation\(n!\)\(\dfrac{n!}{n_1!\cdot n_2!\,\cdot...\cdot \,n_k!}\)
Kombination\(\left(\begin{array}{c} n \\ k \end{array}\right)\)\(\left(\begin{array}{c} n+k-1 \\ k \end{array}\right)\)
Variation\(\dfrac{n!}{(n-k)!}\)\(n^k\)

Welche Abzählmethoden für Deine Aufgabe gesucht ist, lässt sich anhand dreier Fragen nach dem Ausschlussverfahren finden:

  • Werden alle \(n\) Elemente aus einer Menge genutzt oder nur eine Auswahl?
  • Darf ein Element mehrfach vorkommen oder nicht?
  • Ist die Reihenfolge von Bedeutung oder nicht?

In den Erklärungen „Permutation“, „Kombination“ und „Variation“ erfährst Du noch mehr über die jeweiligen Formeln und findest einige Anwendungsbeispiele zum Rechnen.

Hast Du Lust, direkt noch ein paar Übungsaufgaben zur Produktregel der Kombinatorik zu lösen? Dann los!

Produktregel Kombinatorik Übungen

Lies Dir die Aufgaben aufmerksam durch und finde zunächst heraus, wie viele Stufen der Prozess hat und wie viele Elemente sich in jeder Stufe befinden. Diese Werte kannst Du in die Formel zur Produktregel der Kombinatorik einsetzen.

Aufgabe 1

Auf einem Jahrmarkt werden verschiedene Glücksspiele angeboten, darunter ein Glücksrad und ein Würfelwurf. Zunächst wird am Glücksrad mit vier Sektoren \(({\color{#1478C8}blau},\,{\color{#00DCB4}grün},\,{\color{#FA3273}rot},\,{\color{#FFCD00}gelb})\) gedreht, dann zweimal mit einem sechsseitigen Würfel \((1\,-\,6)\) gewürfelt.

a) Gib ein beliebiges \(k\)-Tupel für diesen mehrstufigen Prozess an.

b) Berechne die Anzahl an Ergebnismöglichkeiten in diesem mehrstufigen Prozess.

Lösung

a) Es handelt sich hierbei um einen \(3\)-stufigen Prozess, wodurch ein \(3\)-Tupel als Ergebnismöglichkeit entsteht. Dies kann beispielsweise sein:

\begin{align}3-Tupel:\, ({\color{#00DCB4}grün},\,4,\,3)\end{align}

b) Für jede Stufe wird zunächst die Anzahl der Elemente in der Stufe ermittelt.

\(1.\) Stufe: \(n_1=4\)

\(2.\) Stufe: \(n_2=6\)

\(3.\) Stufe: \(n_3=6\)

Mithilfe der Produktregel der Kombinatorik ergibt sich:

\begin{align}n_1 \cdot n_2 \cdot n_3 &= \\[0.1cm]4 \cdot 6 \cdot 6 &=144\end{align}

In diesem \(3\)-stufigen Prozess gibt es \(144\) Ergebnismöglichkeiten.

Aufgabe 2

In einem mehrstufigen Prozess ist für die erste Stufe eine Menge \(M_1=\{2;\,4;\,7;\,8\}\) gegeben. Die Mächtigkeit der Menge \(M_2\) beträgt \(|M_2|=5\). In der \(3.\) und \(4.\) Stufe wird eine Münze mit \(Kopf\) oder \(Zahl\) geworfen. Die letzte und \(5.\) Stufe ist zunächst unbekannt, jedoch ist die Gesamtanzahl der Ergebnismöglichkeiten mit \(560\) angegeben.

Ermittle die Anzahl der Elemente in der \(5.\) Stufe.

Lösung

Zunächst werden die einzelnen Stufen noch einmal kurz zusammengefasst und die Mächtigkeiten bestimmt.

\begin{align}M_1&=\{2;\,4;\,7;\,8\} &|M_1|&=4 \\[0.1cm]&&|M_2|&=5 \\[0.1cm]M_3&=\{Kopf;\,Zahl\} &|M_3|&=2 \\[0.1cm]M_4&=\{Kopf;\,Zahl\} &|M_4|&=2 \\[0.1cm]&&|M_5| &=\,? \end{align}

Für die Berechnung der Gesamtanzahl an Möglichkeiten gilt:

\begin{align}|M_1| \cdot |M_2| \cdot |M_3| \cdot |M_4| \cdot |M_5| &= 560 \\[0.1cm]4 \cdot 5 \cdot 2 \cdot 2 \cdot |M_5| &=560 \\[0.1cm]80 \cdot |M_5| &=560 \hspace{1cm} |\,:80 \\[0.1cm]|M_5|&=7\end{align}

Die \(5.\) Stufe hat demnach \(7\) Elemente.

In den zugehörigen Karteikarten zum allgemeinen Zählprinzip bzw. der Produktregel der Kombinatorik findest Du noch weitere Übungsaufgaben zum Rechnen und Auswählen!

Zählprinzip / Produktregel der Kombinatorik – Das Wichtigste

  • Mit dem allgemeinen Zählprinzip bzw. der Produktregel der Kombinatorik lässt sich die Anzahl an Ergebnismöglichkeiten in einem mehrstufigen Prozess ermitteln.
  • Jede Stufe hat dabei eine bestimmte Anzahl an Elementen.
  • Die Anzahl der Möglichkeiten in einem \(k\)-stufigen Prozess berechnet sich nach der Produktregel der Kombinatorik durch:

    \begin{align}n_1 \cdot n_2\, \cdot \, ... \, \cdot \, n_k\end{align}

    Dabei steht \(n_k\) für die Anzahl der möglichen Ergebnisse in der \(k\)-ten Stufe.

  • Werden die einzelnen Stufen durch Mengen angegeben, so lässt sich die Produktregel der Kombinatorik durch eine alternative Schreibweise angeben:

    \begin{align}|M_1| \cdot |M_2|\, \cdot \, ... \, \cdot \, |M_k|\end{align}

    Dabei steht \(|M_k|\) für Mächtigkeit der \(k\)-ten Menge.

Häufig gestellte Fragen zum Thema Produktregel Kombinatorik

Mit der Produktregel der Kombinatorik (allgemeines Zählprinzip) lässt sich die Gesamtanzahl an Ergebnismöglichkeiten in einem k-stufigen Prozess ermitteln. 


n• n2 • ... • nk


Dabei steht nk für die Anzahl der Elemente in der Stufe k. 

Sowohl eine Variation als auch eine Kombination ist eine Stichprobe mit k Elementen aus n Elementen. Bei einer Kombination spielt die Reihenfolge der k Elemente keine Rolle (ungeordnete Stichprobe). Hingegen ist bei einer Variation die Reihenfolge von Bedeutung (geordnete Stichprobe).

Werden Elemente nacheinander in einer gewissen Abfolge angeordnet, dann entspricht dies einer Reihenfolge. Je nachdem, ob die Reihenfolge eine Rolle spielt oder nicht, wird zwischen unterschiedlichen Abzählmethoden unterschieden. 

Die Formelzeichen n und M können in der Kombinatorik für eine Menge M mit n Elementen stehen. 

Finales Produktregel Kombinatorik Quiz

Frage

Die Produktregel der Kombinatorik...

Antwort anzeigen

Antwort

... wird auch als allgemeines Zählprinzip bezeichnet. 

Frage anzeigen

Frage

Nenne einen passenden Begriff für die Lücke in folgender Aussage:


„In einem \(k\)-stufigen Prozess wird über die Produktregel der Kombinatorik die

Anzahl der ________________ bestimmt.“

Antwort anzeigen

Antwort

Ergebnismöglichkeiten / \(k\)-Tupel

Frage anzeigen

Frage

Entscheide, welche Formeln die Produktregel der Kombinatorik korrekt abbilden.

Antwort anzeigen

Antwort

\begin{align}n_1 \cdot n_2\,  \cdot \, ... \, \cdot \,  n_k\end{align}

Frage anzeigen

Frage

Erkläre, was ein \(k\)-Tupel bei einem \(k\)-stufigen Prozess darstellt.

Antwort anzeigen

Antwort

Ein \(k\)-Tupel ist ein mögliches, geordnetes Ergebnis bei einem \(k\)-stufigen Prozess und besteht aus \(k\) Elementen. Beispiel:


\begin{align}4-Tupel:\,(2,\,3,\,6,\,9)\end{align}

Frage anzeigen

Frage

Berechne die Anzahl der Ergebnismöglichkeiten bei viermaligem Werfen einer Münze.

Antwort anzeigen

Antwort

$$16$$

Frage anzeigen

Frage

Ein \(4\)-stufiger Prozess liefert \(240\) Ergebnismöglichkeiten, wobei für die Stufen jeweils folgende Angaben vorliegen:

\begin{align}n_1=8 \hspace{1cm} n_2=2 \hspace{1cm} n_3=x \hspace{1cm} n_4=5 \end{align}


Ermittle die Anzahl der Ergebnisse in der \(3.\) Stufe.

Antwort anzeigen

Antwort

$$3$$

Frage anzeigen

Frage

In einem mehrstufigen Prozess ist für die erste Stufe eine Menge \(M_1=\{{\color{#1478C8}blau};\, {\color{#00DCB4}grün}\}\) gegeben. Die Mächtigkeit der Menge \(M_2\) in der zweiten Stufe beträgt \(|M_2|=9\). 

Berechne die Anzahl der Ergebnismöglichkeiten. 

Antwort anzeigen

Antwort

$$18$$

Frage anzeigen

Frage

Ein Mitschüler oder eine Mitschülerin führt die Berechnung eines \(3\)-stufigen Prozess mit einem sechsseitigen Würfel durch. Das Ergebnis der Rechnung ist \(24\).

Prüfe rechnerisch, ob das Ergebnis korrekt berechnet wurde.

Antwort anzeigen

Antwort

Ja, das Ergebnis \(24\) ist korrekt.

Frage anzeigen

Frage

Die Formeln der Abzählmethoden Permutation, Kombination und Variation lassen sich über das allgemeine Zählprinzip (die Produktregel der Kombinatorik) ableiten. 

Benenne drei Fragemöglichkeiten, die bei der Auswahl der Abzählmethode helfen.

Antwort anzeigen

Antwort

  • Werden alle \(n\) Elemente aus einer Menge genutzt oder nur eine Auswahl?
  • Darf ein Element mehrfach vorkommen oder nicht?
  • Ist die Reihenfolge von Bedeutung oder nicht?

Frage anzeigen

Mehr zum Thema Produktregel Kombinatorik
60%

der Nutzer schaffen das Produktregel Kombinatorik Quiz nicht! Kannst du es schaffen?

Quiz starten

Finde passende Lernmaterialien für deine Fächer

Alles was du für deinen Lernerfolg brauchst - in einer App!

Lernplan

Sei rechtzeitig vorbereitet für deine Prüfungen.

Quizzes

Teste dein Wissen mit spielerischen Quizzes.

Karteikarten

Erstelle und finde Karteikarten in Rekordzeit.

Notizen

Erstelle die schönsten Notizen schneller als je zuvor.

Lern-Sets

Hab all deine Lermaterialien an einem Ort.

Dokumente

Lade unzählige Dokumente hoch und habe sie immer dabei.

Lern Statistiken

Kenne deine Schwächen und Stärken.

Wöchentliche

Ziele Setze dir individuelle Ziele und sammle Punkte.

Smart Reminders

Nie wieder prokrastinieren mit unseren Lernerinnerungen.

Trophäen

Sammle Punkte und erreiche neue Levels beim Lernen.

Magic Marker

Lass dir Karteikarten automatisch erstellen.

Smartes Formatieren

Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.

Melde dich an für Notizen & Bearbeitung. 100% for free.

Get FREE ACCESS to all of our study material, tailor-made!

Over 10 million students from across the world are already learning smarter.

Get Started for Free
Illustration