Select your language

Suggested languages for you:
Log In Anmelden
StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
|
|

Die All-in-one Lernapp:

  • Karteikarten
  • NotizenNotes
  • ErklärungenExplanations
  • Lernpläne
  • Übungen
App nutzen

Kombination mit Wiederholung

Save Speichern
Print Drucken
Edit Bearbeiten
Melde dich an und nutze alle Funktionen. Jetzt anmelden
Kombination mit Wiederholung

Vielleicht kennst Du so eine Situation. Du siehst in Deinen Kleiderschrank und findest nichts, außer Kleidungsstücken, die ihre besten Tage schon längst hinter sich haben. Also beschließt Du, in einem Geschäft oder online einzukaufen, um vielleicht auch einen neuen Style zu schaffen. Während Du bereits etliche Kleidungsstücke in den Warenkorb gelegt hast, kannst Du Dir auch vorstellen, manche Sachen doppelt zu kaufen. Es findet also eine Wiederholung desselben Stückes statt.

Kombination mit Wiederholung Warenkorb StudySmarter

Würdest Du zufällig die Kleidungsstücke wählen und beim Anprobieren entscheiden, ob Du sie nimmst, wärst Du schon in einem Fall aus der Kombinatorik. Schon befindest Du Dich nämlich mitten in der Frage, aus wie vielen möglichen Kombinationen Du wählen kannst. Für diesen Fall wirst Du die Kombination mit Wiederholung verwenden. Alles über die Anzahl der möglichen Kombinationen und wie Du die Formel sicher anwenden kannst, lernst Du hier.

Kombination mit Wiederholung - Grundlagen

Die Kombinatorik ermöglicht es, die Anzahl an Anordnungen von verschiedenen Objekten aus einer Menge zu bestimmen. So ist es möglich den Klassiker der Kugeln als Objekte und einer Urne zu verwenden, um alle Konzepte aus der Kombinatorik zu erklären.

Dabei kannst Du die Kombination, die Variation und die Permutation unterscheiden. Für jeden der einzelnen Fälle kann zusätzlich ausgewählt werden, ob sie mit oder ohne Wiederholung stattfinden sollen.

Kombination mit Wiederholung ohne Reihenfolge - Fälle

Um die drei genannten Fälle anzuordnen, kannst Du zwei Gesichtspunkte unterscheiden. Dabei kann es sich um eine Stichprobe handeln, oder es werden – wie bei einer Permutation – alle Objekte verteilt.

Für eine Permutation gilt, dass die Anzahl der gezogenen Objekte k gleich der Gesamtmenge aller Objekte ist:

Kombination mit Wiederholung Bedingung für Permutation StudySmarter

Die Permutation ist Dir in folgendem Beispiel gegeben:

Du verwendest so einen Fall, wenn zum Beispiel alle Personen in einem voll ausgebuchten Flugzeug auf die Sitzplätze verteilt werden. Dieses Beispiel aus der Kombinatorik kannst Du auch auf eine Klasse von Schülerinnen und Schülern anwenden, die ebenso alle einen Sitzplatz auswählen können.

Für diese Fälle zählt dann zusätzlich, dass es keine Wiederholung gibt, also sollen nicht mehrere Schüler auf einem Platz sitzen können. Würde diese Anzahl an Kombinationen noch berücksichtigt werden, so würde dies die Permutation mit Wiederholung abdecken.

Die anderen beiden Fälle der Kombination und Variation werden für eine Stichprobe verwendet, wenn also gilt. Somit wird nur eine bestimmte Anzahl an Kugeln aus einer Urne gezogen und diese gehören zu einer möglichen Kombination dazu. Die Unterscheidung dabei ist wiederum, ob die Reihenfolge eine Rolle spielt. Für eine Kombination ist dies nicht wichtig, für eine Variation schon.

Das Beispiel eines Zahlenschlosses an Deinem Fahrrad ist ein klassisches Beispiel einer Variation. Hier ist die Reihenfolge sehr wohl entscheidend, ob sich das Schloss öffnen lässt oder nicht. Denn die Kombination 8 - 6 - 4 - 2 ist definitiv eine andere als 2 - 4 - 6 - 8, obwohl die Zahlen dieselben sind. Dabei ist zusätzlich die Variation mit Wiederholung gemeint, denn eine Zahl darf durchaus mehrfach verwendet werden, was die PIN 1 - 1 - 1 - 1 beweist.

Allerdings kannst Du Dich dabei fragen, ob die Nummer wirklich so sicher ist.

Kaufst Du allerdings in einem Geschäft Kleidungsstücke ein, ist Dir höchstwahrscheinlich die Reihenfolge, wie sie in die Tüte gelegt werden, egal. Deshalb handelt es sich hierbei um eine Kombination.

Wie bereits erwähnt, kannst Du für jeden der drei Fälle unterscheiden, ob eine Wiederholung stattfindet oder nicht. Vor allem bei nicht unterscheidbaren Objekten, wie 5 grünen Kugeln, ist sie oftmals uninteressant.

Kombinatorik - Urnenmodell

Eventuell hast Du im Zusammenhang mit der Kombinatorik die Fälle kennengelernt, bei denen Kugeln als Objekte aus einer Urne ausgewählt werden. Die Anzahl der möglichen Kombinationen beim Ziehen von k aus n Kugeln lässt sich dabei berechnen. Dafür sind zwei wesentliche Merkmale zu unterscheiden:

  • die Beachtung der Reihenfolge (mit oder ohne)
  • das Zurücklegen (mit oder ohne)

Nachfolgend wirst Du für die verschiedenen Fälle eine Formel und deren Funktionen in einer Aufgabenstellung erhalten.


BedingungAnwendungsbeispielFormel
Variation mit WiederholungWähle k Elemente aus n mit Reihenfolge mit ZurücklegenEine PIN mit vier Zahlen
Variation ohne WiederholungWähle k Elemente aus n mit Reihenfolge ohne ZurücklegenDie ersten drei Plätze bei einem Rennen
Kombination mit WiederholungWähle k Elemente aus n ohne Reihenfolge mit ZurücklegenLosverkauf, wenn die gezogenen Lose ersetzt werden
Kombination ohne WiederholungWähle k Elemente aus n ohne Reihenfolge ohne ZurücklegenGlückspiel 6 aus 49

Die Tabelle soll nur einen kleinen Überblick darstellen. Detaillierteres findest Du bei den entsprechenden Erklärungen:

Kombination mit Wiederholung - Erklärung und Eigenschaften

Die Kombination mit Wiederholung gehört zu dem Gebiet der Kombinatorik und gliedert sich dabei in die sechs möglichen Funktionen ein, die in einer Aufgabe ausgewählt werden können.

Kombination mit Wiederholung - Erklärung

Für eine Kombination mit Wiederholung wird aus einer Menge an Objekten ausgewählt.

Bei einer Kombination mit Wiederholung werden k aus n Objekten aus der Menge gewählt, wobei die Reihenfolge nicht beachtet wird. Objekte können dabei mehrfach ausgewählt werden.

Um also eine Aufgabe lösen zu können, sollten die Angaben für die Gesamtmenge n angegeben werden und die Anzahl der Objekte, die betrachtet werden sollen. Dabei kann in der Kombinatorik für verschiedene Bedingungen herausgefunden werden, welcher Fall zu betrachten ist:

  • n Elemente sind nicht unterscheidbar
  • k Elemente ausgewählt
  • Reihenfolge ist unwichtig
  • Mehrfachauswahl von Elementen

Kombination mit Wiederholung - Formel und Beweis

Für die Kombination mit Wiederholung gilt folgende Formel:

Kombination mit Wiederholung Formel Kombination mit Wiederholung StudySmarter

Die Alternativschreibweise hierfür ist die Berechnung über diese Formel:

Für das Beispiel kannst Du Dir noch einmal klar machen, was konkret passiert. Du ziehst aus einer Urne eine Kugel, notierst ihren Wert oder die Farbe und legst sie danach wieder zurück. Diesen Schritt führst Du k- mal durch. Dabei können Kugeln auch mehrfach gezogen werden.

Wie auch für die Kombination ohne Wiederholung wird auch für die Kombination mit Wiederholung in dieser Formel jede wichtige Information genannt.

Die n möglichen Kombinationen werden um erhöht, da für den Fall die Kombination mit und ohne Wiederholung keinen Unterschied ergibt.
Keine Berücksichtigung weiterer Kombinationen: Es wird eine Kugel entnommen, also befinden sich noch Kugeln in der Urne, die allerdings für diesen Fall unwichtig sind.
Ohne Reihenfolge: Die Formel für die Kombination mit Wiederholung wird für k! um die Objekte reduziert, die zu einer unterschiedlichen Reihenfolge führen würden. Dabei werden also die Kombination von Zahlen wie 3 - 6 und 6 - 3 als eine Kombination gewertet.

Kombination mit Wiederholung - Beispiel und berechnen

Um die Kombination mit Wiederholung auszurechnen, kann aus zwei möglichen Methoden ausgewählt werden. Du kannst sie sowohl mit dem Taschenrechner, als auch händisch ausrechnen.

Kombination mit Wiederholung - Berechnung per Hand

Für diese Berechnung solltest Du die Alternativformel benutzen, um die Berechnung manuell durchzuführen. Danach ist es wichtig, die Werte für k und n einzufügen und die Fakultät zu berechnen.

Für das Beispiel aus der Kombinatorik mit der Kombination mit Wiederholung verwendest Du für k und n folgende Werte:

,

Zur Erinnerung: Die alternative Formel für die Kombination mit Wiederholung kannst Du zur Berechnung benutzen.

Nun ist es Deine Aufgabe, die Werte für k und n einzufügen und die Klammern zu berechnen:

Nun kannst Du die Berechnung durchführen. Dabei ist die Fakultät das Produkt aus den natürlichen Zahlen, die kleiner gleich der genannten Zahl ist, bis 1. In diesem Fall kannst Du auch Werte aus dem Zähler bzw. Nenner streichen.

Es gibt also insgesamt eine Anzahl von 10 möglichen Funktionen für die Kombination mit Wiederholung.

Kombination mit Wiederholung - Berechnung per Taschenrechner

Den Binomialkoeffizienten berechnest Du an deinem Taschenrechner mit der nCr-Taste. Diese Funktion ist eine Tastenkombination der Taste im linken oberen Eck deines Taschenrechners mit .

Ist also eine Formel für die Kombination mit Wiederholung in dieser Form gegeben, so nutzt Du diese Tastenkombination für eben diese Formel:

Als Beispiel sollen Dir für n die Zahl 10 und für k die 5 gegeben sein.

Entweder berechnest Du die Zahl bereits im oberen Bereich oder Du gibst es einfach in eine Klammer ein:

Alternativ kannst Du auch die Alternativformel eintippen. Dafür benötigst Du für die Fakultät folgende Tastenkombination:.

Kombination mit Wiederholung - Beispiel

Aus der Einleitung hast Du bereits erfahren, dass Dich das Shoppingfieber ergriffen hat und Du verschiedene Kleidungsstücke kaufen möchtest. Das wirst Du in diesem Beispiel erlernen.

Aufgabe 1

Du möchtest insgesamt 6 Kleidungsstücke kaufen, wobei Du in deiner Umkleide 15 Stück hast. Gehe davon aus, Du würdest zufällig auswählen, welche Sachen es sein sollen. Dabei dürfen die selben Kleidungsstücke mehrfach vorkommen. Was gilt hierbei für die Kombination mit Wiederholung?

Lösung

In dieser Aufgabe gilt, dass n die Zahl 15 und k die Zahl 6 ist. Da Kleidungsstücke mehrfach ausgewählt werden können, die Reihenfolge allerdings egal ist, wie Du sie auswählst, handelt es sich um eine Kombination mit Wiederholung.

Kombination mit Wiederholung - Aufgaben

Nun kannst Du Dein Wissen praktisch auf die Probe stellen. Viel Spaß!

Aufgabe 2

Du bist auf einem Volksfest oder Jahrmarkt Deiner Wahl. Nach den leckeren Hähnchen vom Stand oder aus dem Zelt wolltest Du nun ein paar Lose kaufen. Es können sechs unterschiedliche Kategorien ausgewählt werden. Von grün, blau und gelb bis hin zu rot, violett und pink. Ein Los kostet 1 Euro. Du möchtest vier Euro verwenden. Aus wie vielen möglichen Kombinationen an Losen kannst Du wählen?

Lösung

Wenn ein Los 1 Euro kostet, kannst Du mit Deinem Geld insgesamt vier Stück kaufen, bzw. ziehen. Unabhängig von den Gewinnen bzw. Nieten kannst Du aus sechs möglichen Losen ziehen.

Hier zählt die Kombination mit Wiederholung, Da Dir die Reihenfolge der Gewinne egal ist, allerdings ist entscheidend, dass Du eine Kategorie auch mehrfach wählen kannst.

Aufgabe 3

In einer Urne befinden sich 8 unterschiedlich gefärbte Kugeln. Du ziehst drei dieser Kugeln mit Zurücklegen, aber ohne Beachtung der Reihenfolge. Wie viele Möglichkeiten gibt es?

Lösung

Du ziehst also drei Kugeln aus einer Urne mit acht Stück. Die Angabe verrät Dir, dass die Kombination mit Wiederholung gefordert ist. Auch wenn die Objekte zwar wegen ihrer unterschiedlichen Farben unterscheidbar sind, ist explizit gefordert, dass die Reihenfolge nicht beachtet werden soll.

Aufgabe 4

5 Kinder spielen zusammen verstecken. Dabei sucht sich jeder einen Platz auf dem Pausenhof, wobei sich 15 als äußerst geeignet herausstellen. Paula und Peter hätten nichts dagegen, sich in einem Versteck aufzuhalten, was auch auf die anderen Kinder zutrifft. Es ist nur entscheidend, dass die Freunde gefunden werden, nicht aber wann das geschieht. Wie viele mögliche Verteilungen gibt es?

  1. Erkläre, um welches Zufallsexperiment es sich handelt.
  2. Berechne diesen Fall.

Lösung

a. In dieser Aufgabe ist nach der Kombination mit Wiederholung gefragt. Das kannst Du dabei erkennen:

  • Stichprobe: Du betrachtest eine Anzahl von n = 15 Verstecken. Dabei werden diese nur unter sechs Personen aufgeteilt, also es gilt nicht, dass ist.
  • Mit Zurücklegen/mit Wiederholung: Beispielhaft wurden die Kinder Paula und Peter herangezogen. Es ist in dieser Aufgabe auch möglich, dass sich mehr Kinder in einem Versteck aufhalten.
  • Ohne Reihenfolge: Es ist nicht so wichtig, welcher Schüler als erster gefunden wurde und welche darauffolgen.

b. Wichtig ist an dieser Stelle noch folgendes. Es handelt sich um fünf Kinder. Da allerdings einer auf die Suche geht, werden 4 Kinder auf die Verstecke verteilt.

Kombination mit Wiederholung - Das Wichtigste

  • In der Kombinatorik kannst Du die Variation, Kombination und Permutation unterscheiden.
  • Die Permutation gilt für , die Kombination, falls die Reihenfolge keine Rolle spielt. Wenn sie entscheidend ist, dann handelt es sich um eine Variation. Jeweils unterscheidest Du sie mit oder ohne Wiederholung.
  • Für die Kombination mit Wiederholung kannst Du die Formel Kombination mit Wiederholung Formel Kombination mit Wiederholung StudySmarter verwenden.
  • Für die Kombination mit Wiederholung gilt: ohne Reihenfolge, mit Wiederholung, Stichprobe.
  • Für die Berechnung ohne Taschenrechner verwendest Du diese Formel: Dabei ist die Fakultät das Produkt aus den natürlichen Zahlen kleiner gleich der Zahl bis 1.
  • Für den Taschenrechner nutzt Du die Tastenkombination [SHIFT] + .

Häufig gestellte Fragen zum Thema Kombination mit Wiederholung

Die Kombination mit Wiederholung beschreibt ein Zufallsexperiment aus der Kombinatorik bei dem die Reihenfolge keine Rolle spielt. Dabei unterscheidet sie sich von der Variation bei der die Reihenfolge wichtig ist. Für die Kombination mit Wiederholung gilt außerdem, dass Objekte zurückgelegt werden können.

Ohne Beachtung der Reihenfolge bedeutet für die Kombination, dass die Reihenfolge nicht entscheidend ist, wenn zum Beispiel Kugeln aus einer Urne gezogen werden. So können diese auch nicht unterscheidbar sein, sodass ohnehin keine Reihenfolge feststellbar ist. Oder bei einem Kauf von Lebensmitteln, ist es unwichtig, in welcher Reihenfolge diese in eine Tüte gelegt werden, bzw. entnommen werden.

Finales Kombination mit Wiederholung Quiz

Frage

Was gilt für die Kombination mit Wiederholung?

Antwort anzeigen

Antwort

Die Reihenfolge spielt keine Rolle

Frage anzeigen

Frage

Du kaufst ein paar Lebensmittel im Discounter. In deinem Korb befinden sich unter anderem drei Äpfel. Welches Zufallsexperiment gilt?

Antwort anzeigen

Antwort

Kombination mit Wiederholung

Frage anzeigen

Frage

Du wählst Kugeln aus einer Urne ohne Zurücklegen mit Beachtung der Reihenfolge, allerdings weniger als sich in der Urne befinden. Welches Zufallsexperiment aus der Kombinatorik trifft zu?

Antwort anzeigen

Antwort

Variation ohne Wiederholung

Frage anzeigen

Frage

Welches Zufallsexperiment gilt für die Platzierungen eines Laufes?

Antwort anzeigen

Antwort

Variation ohne Wiederholung

Frage anzeigen

Frage

Fall A: Ein 100m Lauf mit Platzierung.

Fall B: Eine PIN-Nummer.

Worin unterscheiden sich die beiden Fälle?

Antwort anzeigen

Antwort

Mit oder ohne Wiederholung

Frage anzeigen

Frage

In einem Topf befinden sich 7 unterschiedlich gefärbte Lose. Du möchtest dabei 3 Stück wählen. Berechne die Kombination mit Wiederholung.

Antwort anzeigen

Antwort

Es gibt 84 mögliche Kombinationen.

Frage anzeigen

Frage

Du möchtest zufällig 3 Tafeln Schokolade auf sechs Tellern verteilen. Es können auch drei Tafeln auf einem Teller liegen. Berechne die Kombination mit Wiederholung.

Antwort anzeigen

Antwort

Es gibt 56 mögliche Kombinationen.

Frage anzeigen

Frage

Welcher Fall aus der Kombinatorik gilt für das Glücksspiel 6 aus 49?

Antwort anzeigen

Antwort

Kombination ohne Wiederholung

Frage anzeigen
Mehr zum Thema Kombination mit Wiederholung
60%

der Nutzer schaffen das Kombination mit Wiederholung Quiz nicht! Kannst du es schaffen?

Quiz starten

Finde passende Lernmaterialien für deine Fächer

Alles was du für deinen Lernerfolg brauchst - in einer App!

Lernplan

Sei rechtzeitig vorbereitet für deine Prüfungen.

Quizzes

Teste dein Wissen mit spielerischen Quizzes.

Karteikarten

Erstelle und finde Karteikarten in Rekordzeit.

Notizen

Erstelle die schönsten Notizen schneller als je zuvor.

Lern-Sets

Hab all deine Lermaterialien an einem Ort.

Dokumente

Lade unzählige Dokumente hoch und habe sie immer dabei.

Lern Statistiken

Kenne deine Schwächen und Stärken.

Wöchentliche

Ziele Setze dir individuelle Ziele und sammle Punkte.

Smart Reminders

Nie wieder prokrastinieren mit unseren Lernerinnerungen.

Trophäen

Sammle Punkte und erreiche neue Levels beim Lernen.

Magic Marker

Lass dir Karteikarten automatisch erstellen.

Smartes Formatieren

Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.

Gerade angemeldet?

Ja
Nein, aber ich werde es gleich tun

Melde dich an für Notizen & Bearbeitung. 100% for free.