Login Anmelden

Select your language

Suggested languages for you:

Select your language

Suggested languages for you:
StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
|
|

3M Aufgaben

3M Aufgaben

\( \definecolor{bl}{RGB}{20, 120, 200} \definecolor{gr}{RGB}{0, 220, 180} \definecolor{r}{RGB}{250, 50, 115} \definecolor{li}{RGB}{131, 99, 226} \definecolor{ge}{RGB}{255, 205, 200} \) Joshua ist auf dem Jahrmarkt an einer Losbude. Dort steht: Gewinnwahrscheinlichkeit 20 Prozent. Joshua möchte gerne einen Gewinn mit nach Hause nehmen. Er überlegt, wie viele Lose er mindestens kaufen muss, damit er mit einer Wahrscheinlichkeit von mindestens 90 Prozent mindestens einmal gewinnt.

Das waren ganz schön viele "mindestens" in diesem Beispiel, oder? Es handelt sich um eine 3M Aufgabe. Gesucht ist die Anzahl n an Versuchsdurchführungen.

Was 3-mal-mindestens-Aufgaben genau sind und wie die Lösung dieser Aufgaben aussieht, erfährst Du in dieser Erklärung.

3M Aufgaben in Mathe – Erklärung der Bedeutung in der Stochastik

Eine 3M Aufgabe in Mathe kannst Du daran erkennen, dass sie das Wort "mindestens" oder ähnliche Wörter mit derselben Bedeutung genau dreimal enthält.

Die Gewinnwahrscheinlichkeit an der Losbude beträgt 20 Prozent.

Wie viele Lose muss Joshua mindestens kaufen, damit er mit einer Wahrscheinlichkeit von mindestens 90 Prozent mindestens einen Gewinn macht?

Sowohl die Anzahl an Versuchsdurchführungen, die Wahrscheinlichkeit als auch die Trefferanzahl enthält ein mindestens.

Grundlage für jede 3M-Aufgabe ist ein Bernoulli-Experiment. Die zugrundeliegende Zufallsvariable \(X\) ist also binomialverteilt. Das Bernoulli-Experiment wird mehrfach durchgeführt, eine Bernoulli-Kette entsteht.

In den Erklärungen "Binomialverteilung" und "Bernoulli Experiment" kannst Du mehr zu diesen Themen erfahren. Klicke dazu einfach auf den Begriff.

Solche 3M-Aufgaben können immer nach demselben Schema gelöst werden. Doch warum enthält dieses Beispiel zwei Wahrscheinlichkeiten?

Jede 3M-Aufgabe enthält zwei Wahrscheinlichkeiten: einmal \(p\) für die Trefferwahrscheinlichkeit bei einer Durchführung und einmal die Wahrscheinlichkeit \(P\) für ein Ereignis.

Die Gewinnwahrscheinlichkeit beträgt 20 Prozent. Dies ist das "kleine" \(p\), also \(p=0{,}2\). Es ist die Wahrscheinlichkeit für einen Treffer bei einer Versuchsdurchführung. \(p=0{,}2\) ist bei jeder Durchführung gleich.

Joshua möchte mit einer Wahrscheinlichkeit von mindestens 90 Prozent mindestens einen Gewinn machen. Dies ist die Wahrscheinlichkeit für das Ereignis "mindestens einen Treffer". Es wird mit einem "großen" P geschrieben, weil es eine bedingte Wahrscheinlichkeit ist.

$$P( \text{mindestens ein Treffer} )=P(X \geq 1) \geq 0{,}9$$

Bei \(P( \text{mindestens ein Treffer} )=P(X \geq 1) \geq 0{,}9 \) handelt es sich um eine kumulierte Binomialverteilung.

Doch wie sieht nun die Lösung einer solchen 3-mal-mindestens-Aufgabe aus?

3-mal-mindestens-Aufgabe – n gesucht

Im obigen Beispiel ist die Anzahl an nötigen Versuchsdurchführungen gesucht. Diese Anzahl kannst Du stets auf demselben Weg bestimmen.

3-mal-mindestens-Aufgaben – n bestimmen am Beispiel

Sieh Dir zuerst die Lösung der Aufgabe an diesem Beispiel an.

Die Gewinnwahrscheinlichkeit an der Losbude beträgt 20 Prozent.

Wie viele Lose muss Joshua mindestens kaufen, damit er mit einer Wahrscheinlichkeit von mindestens 90 Prozent mindestens einen Gewinn macht?

Es handelt sich um eine Binomialverteilung mit \(p=0{,}2\) sowie \(P(X \geq 1) \geq 0{,}9 \). Gesucht ist \(n\). Um \(n\) zu bestimmen, verwendest Du zuerst das Gegenereignis \(P(X=0)\) von \(P(X \geq 1) \). Grund hierfür ist, dass Du \(P(X \leq 1)\) nicht berechnen kannst, \(P(X=0)\) mit der Binomialverteilung jedoch schon.

\begin{align}P(X \geq 1) \geq 0{,}9 \\ 1-P(X=0) \geq 0{,}9\end{align}

Jetzt schreibst Du auf, wie Du \(P(X=0)\) für ein beliebiges \(n\) bei der Binomialverteilung berechnest.

\begin{align}P(X=0) & =\begin{pmatrix} n \\ 0 \end{pmatrix}·0{,}2^0·0{,}8^{n-0} \\[0.2cm] & =1 · 1 · 0{,}8^n \\[0.4cm] & = 0{,}8^n\end{align}

Im nächsten Schritt setzt Du dies in die Ungleichung ein.

\begin{align}1-P(X=0) \geq 0{,}9 \\ 1-0{,}8^n \geq 0{,}9 \end{align}

Jetzt formst Du die Ungleichung um und löst nach \(n\) mithilfe des Logarithmus auf.

\begin{array}{rcll}1-0{,}8^n & \geq & 0{,}9 &|+0{,}8^n -0{,}9 \\[0.1cm] 1-0{,}9 & \geq & 0{,}8^n \\[0.1cm] 0{,}1 & \geq & 0{,}8^n & |lg(\dots) \\[0.1cm] lg(0{,}1) & \geq & lg(0{,}8^n) & |\text{Logarithmusgesetz} \\[0.1cm] lg(0{,}1) & \geq & n·lg(0{,}8) & | : lg(0{,}8) \\[0.1cm] \dfrac{lg(0{,}1)}{lg(0{,}8)} & {\color{r}{\leq}} & n \\[0.1cm] 10{,}32 & \leq & n\end{array}

Achtung: \(lg(0{,}8)\) ist eine negative Zahl. Wenn Du durch sie teilst, dreht sich das Relationszeichen um!

Für \(n \geq 10{,}32\) ist \(P(X\geq 1)\geq 0{,}9\). Es ergeben aber nur ganzzahlige Versuchsdurchführungen Sinn. Deswegen ist \(n=11\).Joshua muss mindestens 11 Lose kaufen, um mit einer Wahrscheinlichkeit von mindestens 90 Prozent mindestens einen Gewinn zu haben.

Wieso wird im Beispiel \(10{,}32 \leq n\) zu \(11 \leq n\) gerundet, obwohl das nicht den Rundungsregeln entspricht?

Gesucht ist die Anzahl an Versuchsdurchführungen, sodass Joshua mit 90-prozentiger Wahrscheinlichkeit mindestens einen Gewinn erhält. Bei 10 Versuchsdurchführungen wäre die Wahrscheinlichkeit noch kleiner als 90 Prozent. Deswegen wird zur 11 gerundet. Bei einer Binomialverteilung gibt es generell nur ganze Zahlen für die Zufallsgröße \(X\).

3-mal-mindestens-Aufgaben – allgemeine Lösung für "n gesucht"

Das Vorgehen, um 3-mal-mindestens-Aufgaben einer Binomialverteilung zu lösen, ist immer dasselbe, solange nach mindestens einem Treffer gefragt ist. Zur Lösung kannst Du folgendes Schema verwenden:

Gegeben ist eine 3-mal-mindestens-Aufgabe mit \(p\) sowie \(P(X \geq 1) \geq q\). Gesucht: \(n\)

  1. Schritt:Ungleichung aufstellen und Gegenereignis einsetzten:\begin{align}P(X \geq 1) \geq q \\ 1-P(X=0) \geq q\end{align}
  2. Schritt:Gegenereignis \(P(X=0)\) berechnen mit \((1-p)^n\) (Binomialverteilung)$$1-(1-p)^n \geq q$$
  3. Schritt:Ungleichung umformen$$1-q \geq (1-p)^n$$
  4. Schritt:Logarithmus und Logarithmusgesetz$$lg(1-q) \geq n·lg(1-p) $$
  5. Schritt:Durch \(lg(1-p)\) teilen. Dadurch dreht sich das Relationszeichen um$$\frac{lg(1-q)}{lg(1-p)} \leq n$$
  6. Schritt:\(n\) aufrunden

Nach dieser Schritt-für-Schritt-Anleitung kannst Du vorgehen, wenn mindestens ein Treffer gefordert ist.

Statt auf beiden Seiten den dekadischen Logarithmus zu verwenden, kannst Du auch den Logartihmus zur Basis \(1-p\) nutzen.

Sieh Dir noch einmal den 3. Schritt an:

$$1-q \geq (1-p)^n$$

Um den Logarithmus zur Basis \(1-p\) zu verwenden, ersetzt Du zuerst das größergleich-Zeichen durch ein Gleichheitszeichen.

$$1-q = (1-p)^n$$

Jetzt kannst Du mithilfe des Logarithmus umschreiben:

$$log_{1-p}(1-q)=n$$

Schließlich beachtest Du noch, dass dies die Mindestgröße für \(n\) ist, da Du das größergleich-Zeichen durch ein Gleichheitszeichen ersetzt hast.

Im vorherigen Beispiel von Joshua und dem Lose-Ziehen hattest Du:

$$0{,}1 \geq 0{,}8^n$$

Hier wurde ursprünglich auf beiden Seiten der dekadische Logarithmus verwendet. Du kannst aber auch ein Gleichheitszeichen verwenden und mithilfe des Logarithmus zur Basis \(0{,}8\) umschreiben:

\begin{align}0{,}1= 0{,}8^n \\ log_{0{,}8}(0{,}1)=n \\ 10{,}32=n\end{align}

Auch hier rundest Du auf und weißt, dass mindestens 11 Versuchsdurchführungen notwendig sind.

Diese Vorgehensweise ist aber nur möglich, wenn Dein Taschenrechner den Logarithmus zu jeder beliebigen Basis berechnen kann.

3-mal-mindestens-Aufgabe – p gesucht

In manchen 3-mal-mindestens-Aufgaben einer Binomialverteilung ist die Anzahl an Versuchsdurchführungen gegeben und dafür die Wahrscheinlichkeit \(p\) gesucht.

3-mal-mindestens-Aufgaben – p bestimmen am Beispiel

Du kannst ähnlich vorgehen wie bei "n gesucht".

Joshua kauft 10 Lose an einer Losbude.

Wie hoch muss die Gewinnwahrscheinlichkeit \(p\) mindestens sein, damit er mit einer Wahrscheinlichkeit von mindestens 90 Prozent mindestens einen Gewinn macht?

Es ist \(n=10\) gegeben und \(P(X \geq 1) \geq0{,}9\) gefordert. Gesucht ist \(p\).

Zuerst verwendest Du wieder das Gegenereignis und berechnest \(P(X=0)=(1-p)^{10}\) in der Ungleichung.

\begin{align}P(X \geq 1) \geq 0{,}9 \\ 1-P(X=0) \geq 0{,}9 \\ 1-(1-p)^{10} \geq 0{,}9\end{align}

Auch hier formst Du nun um.\begin{array}{rcll}1-(1-p)^{10} & \geq & 0{,}9 & |-0{,}9+(1-p)^{10} \\0{,}1 & \geq & (1-p)^{10} &|\sqrt[10]{} \\ \sqrt[10]{0{,}1} & \geq & 1-p & |+p-\sqrt[10]{0{,}1} \\ p & \geq & 1-\sqrt[10]{0{,}1} \\ p & \geq & 0{,}21\end{array}

Die Gewinnwahrscheinlichkeit muss mindestens \(0{,}21\) sein, damit Joshua bei 10 Losen mit einer Wahrscheinlichkeit von 90 Prozent mindestens einen Gewinn hat.

In dem Beispiel kannst Du erkennen, dass für "p gesucht" kein Logarithmus notwendig ist. In diesem Fall wird die n-te Wurzel gezogen.

3-mal-mindestens-Aufgaben – allgemeine Lösung "für p gesucht"

Auch die Vorgehensweise für "p gesucht" kann allgemein formuliert werden.

Gegeben ist eine 3-mal-mindestens-Aufgabe mit \(n\) sowie \(P(X \geq 1) \geq q\). Gesucht: \(p\)

  1. Schritt:Ungleichung aufstellen und Gegenereignis einsetzten:\begin{align}P(X \geq 1) \geq q \\ 1-P(X=0) \geq q\end{align}
  2. Schritt:Gegenereignis \(P(X=0)\) berechnen mit \(1-p)^n\ (Binomialverteilung)$$1-(1-p)^n \geq q$$
  3. Schritt:umformen$$1-q \geq (1-p)^n$$
  4. Schritt:n-te Wurzel ziehen$$\sqrt[n]{1-q} \geq 1-p $$
  5. Schritt:nach \(p\) umformen$$p \geq 1-\sqrt[n]{1-q} $$
  6. Schritt:\(n\) aufrunden

Die Schritte 1 bis 3 sind identisch für "n gesucht" und "p gesucht". Erst ab dem 4. Schritt unterscheidet sich die Vorgehensweise.

3-mal-mindestens-Aufgabe – Übungen

Die folgenden Übungen kannst Du nutzen, um 3-mal-mindestens-Aufgaben einer Binomialverteilung zu üben.

Aufgabe 1

Ein Glücksrad hat rote, blaue und gelbe Felder. Zeigt das Glücksrad ein rotes Feld, gewinnt man. Die Wahrscheinlichkeit, ein rotes Feld zu drehen, ist \(p=0{,}25\). Wie häufig musst Du das Rad mindestens drehen, um mit einer Wahrscheinlichkeit von mindestens 95 Prozent mindestens einen Gewinn zu erhalten?

Lösung

Gegeben ist \(p=0{,}25\), gefordert ist \(P(X\geq 1) \geq 0{,}95\) und gesucht ist \(n\).

Zuerst verwendest Du das Gegenereignis von \(P(X \geq 1)\) und berechnest dessen Wahrscheinlichkeit mit der Binomialverteilung. Dann formst Du die Ungleichung um und verwendest den Logarithmus.

\begin{array}{rcll}P(X \geq 1) & \geq & 0{,}95 \\[0.1cm] 1-P(X=0) & \geq & 0{,}95 \\ 1-\begin{pmatrix} n \\ 0 \end{pmatrix} · 0{,}25^0 ·(1-0{,}25)^{n-0} & \geq & 0{,}95 \\ 1-1·1·0{,}75^n & \geq & 0{,}95 \\[0.2cm] 1-0{,}75^n & \geq & 0{,}95 & |\,+0{,}75^n -0{,}95\\[0.2cm] 0{,}05 & \geq & 0{,}75^n & |\, lg(\dots)\\[0.2cm] lg(0{,}05) & \geq & n · \lg(0{,}75) & |\,:lg(0{,}75)\\[0.1cm] \dfrac{lg(0{,}05)}{lg(0{,}75)} & \leq & n \\[0.1cm] 10{,}41 & \leq & n \\[0.1cm] 11 & \leq & n\end{array}

Denk daran, dass sich das Relationszeichen der Ungleichung umdreht, da Du durch eine negative Zahl teilst.

Du musst mindestens 11-mal das Glücksrad drehen, um mit einer Wahrscheinlichkeit von mindestens \(0{,}95\) mindestens einen Gewinn zu erhalten.

Wenn Du Dich mit den Rechenschritten und der Binomialverteilung bereits auskennst, kannst Du auch einige Zeilen weglassen und von \(1-P(x=0)\) direkt zu \(1-0{,}75^n\) springen.

Aufgabe 2

In einem Beutel sind einfarbige und gestreifte Kugeln, insgesamt 20. Man erzielt einen Treffer, wenn eine gestreifte Kugel gezogen wird. Du ziehst achtmal. Wie groß muss die Wahrscheinlichkeit für eine gestreifte Kugel mindestens sein, damit Du mit einer Wahrscheinlichkeit von mindestens \(0{,}9\) mindestens einen Treffer erzielst?

Lösung

Gegeben ist \(n=8\). Gefordert ist \(P(X \geq 1) \geq 0{,}9\) und gesucht ist \(p\).

Du verwendest das Gegenereignis von \(P(X \geq 1) \), berechnest dessen Wahrscheinlichkeit mit der Binomialverteilung und löst dann die Ungleichung nach \(p\) auf.

\begin{array}{rcll}P(X \geq 1) & \geq & 0{,}9 \\[0.1cm] 1-P(x=0) & \geq & 0{,}9 \\ 1- \begin{pmatrix} n \\ 0 \end{pmatrix} · p^0 ·(1-p)^{8-0} & \geq & 0{,}9 \\ 1-1·1·(1-p)^8 & \geq & 0{,}9 \\[0.1cm] 1-(1-p)^8 & \geq & 0{,}9 & |\,+(1-p)^8-0{,}9\\[0.1cm] 0{,}1 & \geq & (1-p)^8 & |\, \sqrt[8]{} \\[0.1cm] \sqrt[8]{0{,}1} & \geq & 1-p & |\,+p-\sqrt[8]{0{,}1}\\[0.1cm] p & \geq & 1-\sqrt[8]{0{,}1} \\[0.1cm] p & \geq & 0{,}25\end{array}

Die Wahrscheinlichkeit für eine gestreifte Kugel muss mindestens \(0{,}25\) sein. Bei insgesamt 20 Kugeln müssten also 5 davon gestreift sein.

Dreimal mindestens Aufgaben - Das Wichtigste

  • 3-mal-mindestens-Aufgaben erkennst Du daran, dass sie dreimal das Wort "mindestens" oder ähnliche Wörter enthalten.
  • Die Grundlage für 3-mal-mindestens-Aufgaben ist eine Binomialverteilung. Das Zufallsexperiment wird mehrmals durchgeführt, sodass eine Bernoulli-Kette entsteht.
  • Häufig wird bei 3-mal-mindestens-Aufgaben die Anzahl an benötigten Versuchsdurchführungen gesucht. Dann gehst Du wie folgt vor:
    • Gegenereignis verwenden
    • Wahrscheinlichkeit des Gegenereignisses mit der Binomialverteilung berechnen
    • Ungleichung umformen und Logarithmus anwenden
  • Manchmal wird die Wahrscheinlichkeit p in 3-mal-mindestens-Aufgaben gesucht.
    • Gegenereignis verwenden
    • Wahrscheinlichkeit des Gegenereignisses mit der Binomialverteilung berechnen
    • Ungleichung umformen und n-te Wurzel ziehen

Nachweise

  1. Baum et al. (2009). Lambacher Schweizer 11/12, Mathematik für Gymnasien, Gesamtband Oberstufe Niedersachsen. Ernst Klett Verlag.
  2. Becker et al. (2016). Formelsammlung bis zum Abitur - Mathematik - Physik - Astronomie - Chemie - Biologie - Informatik. Duden Schulbuchverlag.

Häufig gestellte Fragen zum Thema 3M Aufgaben

Eine Dreimal-Mindestens-Aufgabe kommt bei einer Binomialverteilung mit mehrmaligen Durchführungen zur Anwendung. Gesucht ist dann zum Beispiel die Mindestanzahl an Versuchsdurchführungen, um mit einer Mindestwahrscheinlichkeit mindestens einen Treffer zu erzielen.

Eine Dreimal-Mindestens-Aufgabe kannst Du gut am Wort "mindestens" erkennen. Es kommt in der Aufgabe dreimal vor. Manchmal kann auch ein ähnliches Wort verwendet werden.

Gesucht ist die Wahrscheinlichkeit für mindestens eine 6. Sie setzt sich aus drei Ereignissen zusammen. "eine Sechs", "zwei Sechsen" und "drei Sechsen". Du berechnest für jedes Ereignis die Wahrscheinlichkeit und addierst sie dann.

Um n bei einer 3-mal-mindestens-Aufgabe zu bestimmen, stellst Du zuerst eine Ungleichung auf und verwendest das Gegenereignis. Entscheidend ist dann die Anwendung des Logarithmus.

Finales 3M Aufgaben Quiz

Frage

Woran kannst Du eine 3-mal-mindestens-Aufgabe erkennen?

Antwort anzeigen

Antwort

Die Aufgabenstellung enthält dreimal das Wort "mindestens".

Frage anzeigen

Frage

Welche Wahrscheinlichkeitsverteilung liegt bei einer Dreimal-mindestens-Aufgabe vor?

Antwort anzeigen

Antwort

Binomialverteilung

Frage anzeigen

Frage

Handelt es sich bei der folgenden Aufgabenstellung um eine Dreimal-Mindestens-Aufgabe?


Tim wählt zufällig Bücher aus. Die Wahrscheinlichkeit, dass es sich um ein Mathebuch handelt ist \(p=0,1\). Wie viele Bücher muss Tim mindestens auswählen, um mit einer Wahrscheinlichkeit von mindestens 92 Prozent mindestens ein Mathebuch zu bekommen?

Antwort anzeigen

Antwort

Ja

Frage anzeigen

Frage

Handelt es sich bei der folgenden Aufgabenstellung um eine Dreimal-Mindestens-Aufgabe?


Anna hat mindestens vier Geschwister. Sie und ihre Geschwister möchten mindestens jeweils zwei Kinder bekommen. Berechne, wie viele Enkelkinder Annas Eltern dann mindestens haben.

Antwort anzeigen

Antwort

Nein

Frage anzeigen

Frage

Vervollständige den Satz:

Wenn bei einer Dreimal-mindestens-Aufgabe die Anzahl \(n\) an Versuchsdurchführungen gesucht ist, dann verwendest Du ...

Antwort anzeigen

Antwort

den Logarithmus

Frage anzeigen

Frage

Vervollständige den Satz:

Wenn bei einer Dreimal-mindestens-Aufgabe die Wahrscheinlichkeit \(p\) gesucht ist, dann verwendest Du ...

Antwort anzeigen

Antwort

das Wurzelziehen

Frage anzeigen

Frage

Welches Wort enthält eine 3M-Aufgabe genau dreimal? Gib das gesuchte Wort an.

Antwort anzeigen

Antwort

"mindestens"

Frage anzeigen

Frage

Welches Ereignis verwendest Du, um bei einer Dreimal-mindestens-Aufgabe \(P(X \geq 1)\) zu berechnen?

Antwort anzeigen

Antwort

Du verwendest das Gegenereignis.

Frage anzeigen

Frage

Bestimme die Anzahl an mindestens nötigen Versuchsdurchführungen \(n\), um beim Drehen eines Glücksrads mit Gewinnwahrscheinlichkeit \(p=0{,}4\) mit einer Wahrscheinlichkeit von mindestens 99 Prozent mindestens einen Gewinn zu erzielen.

Antwort anzeigen

Antwort

Es handelt sich um eine Dreimal-mindestens-Aufgabe. Es ist:

\begin{array}{rcl}
P(X \geq 1) & \geq & 0{,}99 \\
1-P(X=0) & \geq & 0{,}99 \\ 
1-0{,}6^n & \geq & 0{,}99 \\ 
0{,}01 & \geq & 0{,}6^n \\
lg(0{,}01) & \geq & n·lg(0{,}6) \\
\dfrac{lg(0{,}01)}{lg(0{,}6)} & \leq & n \\ 
9{,}02 & \leq & n
\end{array}

Das Glücksrad muss mindestens zehnmal gedreht werden, um mit einer Wahrscheinlichkeit von mindestens 99 Prozent mindestens einen Gewinn zu erzielen.

Frage anzeigen

Frage

Beim Kauf eines Spielzeugs liegt die Wahrscheinlichkeit für einen Defekt bei \(0{,}05\). Berechne, viele Spielzeuge mindestens gekauft werden müssen, um mit einer Wahrscheinlichkeit von mindestens 80 Prozent mindestens ein defektes Spielzeug zu kaufen.

Antwort anzeigen

Antwort

Es handelt sich um eine Dreimal-mindestens-Aufgabe. Du verwendest das Gegenereignis.

\begin{array}{rcl}
P(X \geq 1) & \geq & 0{,}8 \\ 
1-P(X=0) & \geq & 0{,}8 \\
1-0{,}95^n & \geq & 0{,}8 \\ 
0{,}2 & \geq & 0{,}95^n \\ 
lg(0{,}2) & \geq & n·lg(0{,}95) \\
\dfrac{lg(0{,}2)}{lg(0{,}95)} & \leq & n \\
31{,}38 & \leq & n
\end{array}

Es müssen mindestens 32 Spielzeuge gekauft werden, damit mit einer Wahrscheinlichkeit von mindestens 80 Prozent mindestens eines defekt ist.

Frage anzeigen

Frage

Es werden 100 Schülerinnen und Schüler nach ihrem Lieblingsfach befragt. Berechne, wie groß die Wahrscheinlichkeit dafür, dass das Lieblingsfach einer Person Mathe ist, mindestens sein muss, damit mit einer Wahrscheinlichkeit von mindestens 90 Prozent mindestens 10 Schüler dasselbe angeben.

Antwort anzeigen

Antwort

Es handelt sich um eine Dreimal-mindestens-Aufgabe, bei der \(p\) gesucht ist.

\begin{array}{rcl}
P(X\geq 1) & \geq & 0{,}9 \\ 
1-P(X=0) & \geq & 0{,}9 \\ 
1-(1-p)^100 & \geq & 0{,}9 \\ 
0{,}1 & \leq & (1-p)^{100} \\ 
\sqrt[100]{0{,}1} & \geq & 1-p \\ 
p & \geq & 1-\sqrt[100]{0{,}1} \\ 
p & \geq & 0{,}02
\end{array}
Die Wahrscheinlichkeit dafür, dass eine Person Mathe als Lieblingsfach hat, muss mindestens 2 Prozent betragen.

Frage anzeigen

Frage

Erkläre, wieso die gesuchte Anzahle \(n\) an Versuchsdurchführungen bei der Berechnung einer Dreimal-mindestens-Aufgabe immer aufgerundet wird.

Antwort anzeigen

Antwort

Es ergeben nur ganze Zahlen an Versuchsdurchführungen einer Binomialverteilung Sinn. Es wird eine Zahl an Versuchsdurchführungen gesucht, für die eine bestimme Wahrscheinlichkeit mindestens erreicht wird. Würde abgerundet werden, wird diese Wahrscheinlichkeit nicht erreicht. Deswegen wird immer aufgerundet, auch wenn die Rundungsregeln eigentlich etwas anderes vorgeben.

Frage anzeigen

Frage

Welche Größen können bei einer Dreimal-mindestens-Aufgabe gesucht sein?

Antwort anzeigen

Antwort

Es kann die Gewinnwahrscheinlichkeit \(p\) oder die Anzahl an Versuchsdurchführungen \(n\) gesucht sein.

Frage anzeigen

Frage

Erkläre, wie sich die Wahrscheinlichkeiten \(p\) und \(P(X\geq 1)\) unterscheiden.

Antwort anzeigen

Antwort

Die Wahrscheinlichkeit \(p\) beschreibt die Gewinnwahrscheinlichkeit bei einer Versuchsdurchführung. Die Wahrscheinlichkeit \(P(X \geq 1)\) wiederum ist die Wahrscheinlichkeit, bei einer bestimmten Anzahl \(n\) von Versuchsdurchführungen mindestens einen Treffer zu erzielen.

Frage anzeigen

Frage

Bei einer Dreimal-mindestens-Aufgabe muss die gesuchte Anzahl \(n\) an Versuchsdurchführungen "größergleich" ein bestimmter Wert sein. In der folgenden Rechnung kommt aber "kleinergleich" raus. Erkläre, welcher Fehler gemacht wurde.
\begin{array}{rcl}
P(X \geq 1) & \geq & 0{,}99 \\
1-P(X=0) & \geq & 0{,}99 \\
1-0{,}6^n & \geq & 0{,}99 \\ 
0{,}01 & \geq & 0{,}6^n \\
lg(0{,}01) & \geq & n·lg(0{,}6) \\
\dfrac{lg(0{,}01)}{lg(0{,}6)} & \geq & n \\ 
9{,}02 & \geq & n
\end{array}

Antwort anzeigen

Antwort

Beim Übergang von der drittletzten zur vorletzten Zeile wurde durch \(lg(0{,})6\) geteilt. Der dekadische Logarithmus von einer Zahl zwischen 0 und 1 ist stets negativ. Wenn durch eine negative Zahl geteilt wird, dreht sich das Relationszeichen der Ungleichung um.

Frage anzeigen

Mehr zum Thema 3M Aufgaben
60%

der Nutzer schaffen das 3M Aufgaben Quiz nicht! Kannst du es schaffen?

Quiz starten

Finde passende Lernmaterialien für deine Fächer

Alles was du für deinen Lernerfolg brauchst - in einer App!

Lernplan

Sei rechtzeitig vorbereitet für deine Prüfungen.

Quizzes

Teste dein Wissen mit spielerischen Quizzes.

Karteikarten

Erstelle und finde Karteikarten in Rekordzeit.

Notizen

Erstelle die schönsten Notizen schneller als je zuvor.

Lern-Sets

Hab all deine Lermaterialien an einem Ort.

Dokumente

Lade unzählige Dokumente hoch und habe sie immer dabei.

Lern Statistiken

Kenne deine Schwächen und Stärken.

Wöchentliche

Ziele Setze dir individuelle Ziele und sammle Punkte.

Smart Reminders

Nie wieder prokrastinieren mit unseren Lernerinnerungen.

Trophäen

Sammle Punkte und erreiche neue Levels beim Lernen.

Magic Marker

Lass dir Karteikarten automatisch erstellen.

Smartes Formatieren

Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.

Melde dich an für Notizen & Bearbeitung. 100% for free.

Get FREE ACCESS to all of our study material, tailor-made!

Over 10 million students from across the world are already learning smarter.

Get Started for Free
Illustration