StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
Americas
Europe
In der Statistik können bei der Bewertung von Hypothesen Irrtümer passieren. Die Wahrscheinlichkeit für solch einen Fehler nennt sich Irrtumswahrscheinlichkeit. Dabei wird zwischen einem Fehler 1. Art und einem Fehler 2. Art unterschieden. In diesem Artikel findest Du eine Definition der Irrtumswahrscheinlichkeit sowie eine Erklärung zum Signifikanzniveau, sodass Du die Irrtumswahrscheinlichkeit berechnen kannst.In der Statistik kannst Du Hypothesen (Behauptungen) aufstellen.…
Entdecke über 200 Millionen kostenlose Materialien in unserer App
Speicher die Erklärung jetzt ab und lies sie, wenn Du Zeit hast.
SpeichernLerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmeldenIn der Statistik können bei der Bewertung von Hypothesen Irrtümer passieren. Die Wahrscheinlichkeit für solch einen Fehler nennt sich Irrtumswahrscheinlichkeit. Dabei wird zwischen einem Fehler 1. Art und einem Fehler 2. Art unterschieden. In diesem Artikel findest Du eine Definition der Irrtumswahrscheinlichkeit sowie eine Erklärung zum Signifikanzniveau, sodass Du die Irrtumswahrscheinlichkeit berechnen kannst.
In der Statistik kannst Du Hypothesen (Behauptungen) aufstellen. Diese Hypothesen kannst Du entweder annehmen oder ablehnen. Je nachdem, wie Du Dich entscheidest, kannst Du dabei richtig oder falsch liegen.
Wie Du eine Hypothese aufstellst, erfährst Du im Hypothesentest.
Die Irrtumswahrscheinlichkeit ist definiert als die Wahrscheinlichkeit, mit der die Nullhypothese \(H_0\) fälschlicherweise angenommen oder abgelehnt wird.
Das ist der Fall, wenn eine Hypothese richtig ist, sie aber als falsch angenommen wird und umgekehrt.
\(H_0\) ist richtig | \(H_0\) ist falsch | |
Annahme: \(H_0\) ist richtig | \(H_0\) wird angenommen \(\rightarrow\) richtige Entscheidung | \(H_0\) wird angenommen \(\rightarrow\) falsche Entscheidung |
Annahme: \(H_0\) ist falsch | \(H_0\) wird abgelehnt \(\rightarrow\) falsche Entscheidung | \(H_0\) wird abgelehnt \(\rightarrow\) richtige Entscheidung |
Für die Berechnung der Irrtumswahrscheinlichkeit gibt es zwei Formeln.
\(k\) stellt dabei die vorher festgelegte Entscheidungsregel dar, also bis zu welchem Wert die Nullhypothese \(H_0\) angenommen bzw. abgelehnt wird.
Im Prinzip prüfst Du beim linksseitigen Hypothesentest, ob eine Stichprobe unter \(k\) ist und beim rechtsseitigen, ob die Stichprobe über \(k\) ist.
Beispiele dazu findest Du in der Erklärung "Einseitiger Hypothesentest".
Das Signifikanzniveau \(\alpha\) legt fest, bis zu welchem Wert \(k\) (Entscheidungsregel) die Nullhypothese angenommen bzw. abgelehnt werden soll.
Das Signifikanzniveau wird vorgegeben und weist oft Werte wie \(1\,\%\), \(5\,\%\) oder \(10\,\%\) auf. Je nachdem, wie gravierend die Folgen einer falschen Entscheidung sind, wird ein kleines oder größeres Signifikanzniveau gewählt.
Möchte eine Firma fehlproduzierte Teile aussortieren, sind die Folgen nicht gravierend, falls ein fehlerhaftes Teil an den Kunden geliefert wird. Es kann einfach retourniert werden. Hier kann also ein großes Signifikanzniveau gewählt werden, um nicht unnötig viele intakte Teile wegzuwerfen.
Anders sieht es aber zum Beispiel bei medizinischen Tests aus. Hier ist eine hohe Genauigkeit gefragt. Das Signifikanzniveau wird hier dementsprechend möglichst klein gewählt (beispielsweise \(0{,}01\,\%\)), um falsche Hypothesen auf keinen Fall anzunehmen.
Die Irrtumswahrscheinlichkeit wird unterteilt in zwei Fälle:
Um die Irrtumswahrscheinlichkeit eines zweiseitigen Signifikanztests zu bestimmen, berechnest Du die Wahrscheinlichkeit \(P(\alpha) = 1-P(k_l\leq X\leq k_r)\), wobei \(k_l;k_r\) die linke und rechte Grenze des Annahmebereichs darstellen. \(P(\alpha)\) entspricht der Wahrscheinlichkeit, sich gegen die Nullhypothese zu entscheiden bei einem, Annahmebereich von \(\{k_l; k_l+1; \dots ; k_r-1; k_r\}\).
Genaueres kannst Du im Artikel "Zweiseitiger Hypothesentest" nachlesen.
fälschlicherweise angenommen oder abgelehnt wird.
Das Signifikanzniveau α gibt an, bis zu welchem Wert Du eine Nullhypothese annimmst, bzw. ablehnst.
der Nutzer schaffen das Irrtumswahrscheinlichkeit Quiz nicht! Kannst du es schaffen?
Quiz startenWie möchtest du den Inhalt lernen?
Wie möchtest du den Inhalt lernen?
Kostenloser mathe Spickzettel
Alles was du zu . wissen musst. Perfekt zusammengefasst, sodass du es dir leicht merken kannst!
Sei rechtzeitig vorbereitet für deine Prüfungen.
Teste dein Wissen mit spielerischen Quizzes.
Erstelle und finde Karteikarten in Rekordzeit.
Erstelle die schönsten Notizen schneller als je zuvor.
Hab all deine Lermaterialien an einem Ort.
Lade unzählige Dokumente hoch und habe sie immer dabei.
Kenne deine Schwächen und Stärken.
Ziele Setze dir individuelle Ziele und sammle Punkte.
Nie wieder prokrastinieren mit unseren Lernerinnerungen.
Sammle Punkte und erreiche neue Levels beim Lernen.
Lass dir Karteikarten automatisch erstellen.
Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.
Melde dich an für Notizen & Bearbeitung. 100% for free.
Speichere Erklärungen in deinem persönlichen Bereich und greife jederzeit und überall auf sie zu!
Mit E-Mail registrieren Mit Apple registrierenDurch deine Registrierung stimmst du den AGBs und der Datenschutzerklärung von StudySmarter zu.
Du hast schon einen Account? Anmelden