Select your language

Suggested languages for you:
Log In Anmelden
StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
|
|

Die All-in-one Lernapp:

  • Karteikarten
  • NotizenNotes
  • ErklärungenExplanations
  • Lernpläne
  • Übungen
App nutzen

Pfadmultiplikationsregel

Save Speichern
Print Drucken
Edit Bearbeiten
Melde dich an und nutze alle Funktionen. Jetzt anmelden
Pfadmultiplikationsregel

Ein Schäfer hat 50 Schafe. Die Herde besteht zur Hälfte aus schwarzen und weißen Schafen. Heute möchte er sie scheren. Er öffnet das Tor, lässt ein Schaf heraus, schert es und schickt es zurück auf die Weide zur Herde. Danach öffnet er wieder das Tor und lässt das nächste Schaf heraus. Wie hoch ist die Wahrscheinlichkeit, dass ein Schaf kommt, das dieselbe Farbe hat wie das vorherige? Wie du das herausfinden kannst, erfährst du hier.

Pfadmultiplikationsregel – Herleitung

Bei oben genanntem Beispiel handelt es sich um ein mehrstufiges Zufallsexperiment mit bedingter Wahrscheinlichkeit.

Die bedingte Wahrscheinlichkeit ist die Wahrscheinlichkeit, dass ein Ereignis eintritt, nachdem ein anderes Ereignis bereits eingetreten ist. Sie wird als P geschrieben.

Möchtest du mehr zur bedingten Wahrscheinlichkeiten wissen, dann schau doch einfach im entsprechenden Artikel auf StudySmarter vorbei!

Warum das so ist?

Wenn der Schäfer beim ersten Mal ein schwarzes Schaf erwischt, dann entspricht das der Wahrscheinlichkeit . Aber dass er direkt danach nochmal ein schwarzes erwischt, das ist dann schon wesentlich unwahrscheinlicher. Oder?

Baumdiagramm erstellen

Ersichtlich wird diese Tatsache, wenn du dir ein Baumdiagramm erstellst.

Ein Baumdiagramm ist eine Möglichkeit, mehrstufige Zufallsexperimente visuell darzustellen. Dabei wird jede Stufe einzeln behandelt, sodass die jeweiligen Wahrscheinlichkeiten übersichtlich aufeinander aufbauen.

Genaueres zum Baumdiagramm findest du im gleichnamigen Artikel auf StudySmarter.

Pfadmultiplikationsregel 1. Pfadregel Baumdiagramm StudySmarterAbbildung 1: Baumdiagramm zur 1. Pfadregel

Im Baumdiagramm steht das S für "schwarz" und W für "weiß".

Wenn der Schäfer anfängt, seine Schafe zu scheren, erwischt er mit der Wahrscheinlichkeit ein schwarzes Schaf.

Das ist eine einfache Wahrscheinlichkeit.

Bei der einfachen Wahrscheinlichkeit haben alle möglichen Ereignisse die gleiche Chance, einzutreten. Jede Wahrscheinlichkeit liegt zwischen 0 und 1 und in Summe ergeben alle Wahrscheinlichkeiten immer 1. Sie wird als p geschrieben.

Beim 2. Schaf ist die einfache Wahrscheinlichkeit für ein schwarzes Schaf immer noch , aber unter der Bedingung, dass das 1. Schaf ebenfalls schwarz war. Aus diesem Satz kannst du schon herauslesen, dass es sich dann um eine bedingte Wahrscheinlichkeit handelt.

Pfadmultiplikationsregel – rechnerische Herleitung

Mit einer einfachen Rechnung kannst du dir die 1. Pfadregel selbst erschließen.

Pfadmultiplikationsregel 1. Pfadregel Baumdiagramm StudySmarterAbbildung 2: Baumdiagramm zur Herleitung der 1. Pfadregel

Die Wahrscheinlichkeiten aus derselben hierarchischen Ebene müssen zusammen immer 1 ergeben.

1. Ebene

Das heißt, hier rechnest du die Wahrscheinlichkeit P(S) und P(W) von den ersten beiden Ästen zusammen:

2. Ebene

Hier musst du für die Herleitung ein bisschen rechnen. Du hast 4 mögliche Ausgänge mit der selben Gewichtung, die zusammen 1 ergeben müssen. Du rechnest also:

Das heißt, jeder dieser 4 Ausgänge hat eine Wahrscheinlichkeit von .

Jetzt kannst du ausprobieren, wie du mit den Wahrscheinlichkeiten und eines Pfades auf das Ergebnis kommst.

Die richtige Antwort ist also, dass du die Wahrscheinlichkeiten eines Pfades miteinander multiplizieren musst.

Deshalb heißt die 1. Pfadregel auch Produktregel.

1. Pfadregel (Produktsatz):

Bei einem mehrstufigen Zufallsexperiment musst du für die Wahrscheinlichkeit eines Ereignisses die Wahrscheinlichkeiten entlang des zugehörigen Pfades miteinander multiplizieren.

Die korrekte mathematische Schreibweise für das Ereignis "2 schwarze Schafe nacheinander" sieht so aus:

Es gibt auch eine Möglichkeit, die Wahrscheinlichkeiten von Ereignissen auszurechnen, die nichts miteinander zu tun haben. Also zum Beispiel, dass der Schäfer entweder 2 schwarze oder 2 weiße Schafe von der Weide holt. Dafür verwendest du die 2. Pfadregel.

Hier addierst du die Wahrscheinlichkeiten paralleler Pfade des Baumdiagramms miteinander.

In diesem Fall:

Mehr dazu findest du wie immer hier auf StudySmarter unter dem Titel "2. Pfadregel".

Falls du das Symbol nicht erkennst, es handelt sich hier um das Schnittmengenzeichen .

Die Schnittmenge Vierfeldertafel Schnittmenge StudySmarter beschreibt die gemeinsame Menge mehrerer Elemente.

Sie sagt also aus, wann beispielsweise S und W gleichzeitig eintreffen. Das heißt ist gleichwertig zu .

Neben der Schnittmenge gibt es noch die Vereinigungsmenge . Sie beschreibt die Menge von A und/oder B, sprich neben der gemeinsamen Menge von A und B kann auch nur A oder B eintreffen.

Wenn du dir nicht merken kannst, wann du welche Pfadregel anwendest, versuch's doch mal mit dieser Eselsbrücke:

Pfadmultiplikationsregel ohne Zurücklegen

Nachdem dem Schäfer nach etlichen Stunden Arbeit immer wieder Schafe in die Arme laufen, die bereits geschoren sind, überlegt er sich, die geschorenen Schafe auf eine andere Weide zu lassen. Ändern sich dadurch die Wahrscheinlichkeiten?

Normalerweise wird das mehrstufige Zufallsexperiment mit einer Urne und Kugeln erklärt. Daher hat sich der Begriff "mit/ohne Zurücklegen" eingebürgert.

Pfadmultiplikationsregel 1. Pfadregel Baumdiagramm StudySmarterAbbildung 3: 1. Pfadregel für Zufallsexperiment ohne Zurücklegen

Das Baumdiagramm bleibt gleich, aber für den Fall, dass der Schäfer zuerst ein schwarzes Schaf schert, gibt es danach nicht mehr 25 schwarze Schafe im Gehege, sondern nur noch 24. Du musst also die Wahrscheinlichkeiten neu berechnen.

Achtung! Neben der Anzahl der schwarzen Schafe ändert sich auch die Gesamtzahl der Schafe.

Schert der Schäfer zuerst ein weißes Schaf, ist es genau anders herum.

Für den Fall, dass der Schäfer zwei schwarze Schafe nacheinander schert und sie dann auf eine andere Weide lässt, ergibt sich für das 1. Schaf die Wahrscheinlichkeit . Nun ist ein schwarzes Schaf weniger in der Herde, es sind also nur noch 24 von insgesamt 49 Schafen schwarz. Also liegt die Wahrscheinlichkeit für ein weiteres schwarzes Schaf nun bei .

Die Wahrscheinlichkeit für 2 schwarze Schafe hintereinander berechnet sich also wie folgt:

Pfadmultiplikationsregel – Aufgaben

Sofern du vom ganzen Schafe zählen noch nicht eingeschlafen bist, hier ein paar Übungsaufgaben.

Aufgabe 1

Der Schäfer schert zuerst ein schwarzes, dann ein weißes und dann wieder ein schwarzes Schaf und lässt sie danach zurück zur Herde laufen. Berechne die Wahrscheinlichkeit für dieses Ereignis.

Lösung

Zur Veranschaulichung der Lösung kannst du dir ein Baumdiagramm skizzieren. Der Pfad, den du für die Lösung gehen musst, ist in türkis markiert. Das Baumdiagramm ist aber nur optional und meist viel zu zeitaufwendig. Er empfiehlt sich daher nur am Anfang, wenn du dir noch unsicher bist.

Pfadmultiplikationsregel 1. Pfadregel Baumdiagramm StudySmarterAbbildung 4: Baumdiagramm 1. Pfadregel Aufgabe 1

Mithilfe der Produktregel multiplizierst du die Wahrscheinlichkeiten des Pfades einfach miteinander.

Die Wahrscheinlichkeit, dass der Schäfer ein schwarzes, ein weißes und ein schwarzes Schaf in genau der Reihenfolge schert, liegt also bei .

Aufgabe 2

Berechne den Fall aus Aufgabe 1, wenn der Schäfer die geschorenen Schafe auf eine andere Weide laufen lässt.

Lösung

Hier musst du aufpassen, dass du nicht durcheinander kommst. Bei solch verschachtelten Aufgaben kann ein Baumdiagramm durchaus sinnvoll sein. Wichtig ist, dass du dir die Pfade anschaust und genau aufpasst, wie viele Schafe von jeder Farbe und von der gesamten Herde schon fehlen.

Pfadmultiplikationsregel 1. Pfadregel Baumdiagramm StudySmarterAbbildung 5: Baumdiagramm 1. Pfadregel Aufgabe 2

Sobald du dir einen Überblick verschafft hast, kannst du dann die Wahrscheinlichkeit mithilfe der 1. Pfadregel ausrechnen.

Aufgabe 3

Der Schäfer behauptet, es sei wahrscheinlicher, dass er erst ein weißes, dann ein schwarzes und dann wieder ein weißes Schaf in Folge schert, anstatt 3 weiße in Folge, wenn er die Schafe danach auf eine andere Weide lässt. Hat er Recht?

Lösung

Die Herangehensweise ist dieselbe wie bei Aufgabe 2 über die 1. Pfadregel.

Vielleicht bist du ja schon sicher genug, um den Baum wegzulassen?

Antwort: Der Schäfer hat Recht.

Hier kommt das Gesetz der großen Zahlen zum Tragen. Würde man mehr als 3 Schafe nehmen, wäre der Unterschied zwischen den beiden Wahrscheinlichkeiten größer.

Pfadmultiplikationsregel - Das Wichtigste

  • Möchtest du die Wahrscheinlichkeit eines mehrstufigen Zufallsexperiments berechnen, dann brauchst du die 1. Pfadregel, auch genannt Produktregel. Sie besagt, dass du die Wahrscheinlichkeiten entlang des Pfades miteinander multiplizieren musst, da es sich um eine bedingte Wahrscheinlichkeit handelt.
  • Ein mehrstufiges Zufallsexperiment kann entweder mit oder ohne Zurücklegen ausgeführt werden. Bei der Version ohne Zurücklegen musst du die Wahrscheinlichkeiten für jeden Durchgang neu berechnen, da sich die Gesamtmenge verkleinert.
  • Für komplizierte Aufgabenstellungen kann ein Baumdiagramm sehr hilfreich sein, um nicht den Überblick zu verlieren und um Leichtsinnsfehler zu vermeiden.
  • Eine Eselsbrücke, um sich zu merken, wann welche Pfadregel gilt:

Häufig gestellte Fragen zum Thema Pfadmultiplikationsregel

Es gibt eine Produkt- und eine Summenregel. Die Produktregel brauchst du, wenn du die Wahrscheinlichkeit eines mehrstufigen Zufallsexperiments berechnen willst. Die Summenregel hingegen, wenn du die Wahrscheinlichkeit von mehreren Zufallsexperimenten berechnen willst.

Dafür gibt es eine einfache Eselsbrücke:

1 Pfad -> 1. Pfadregel

2 (oder mehr) Pfade -> 2. Pfadregel

Pfadwahrscheinlichkeiten berechnet man entweder mit der Produkt- oder Summenregel. Die Produktregel berechnet die Wahrscheinlichkeit eines Pfades. Dafür musst du die Wahrscheinlichkeiten entlang dieses Pfades miteinander multiplizieren. Die Summenregel berechnet die Wahrscheinlichkeit mehrerer Pfade. Dafür einfach die Wahrscheinlichkeiten der Pfade miteinander addieren.

Ein Baumdiagramm ist grundsätzlich ein super Hilfsmittel, um Überblick zu schaffen und Leichtsinnsfehler zu vermeiden. Beim mehrstufigen Zufallsexperiment mit Zurücklegen ist es nicht nötig, da sich die Wahrscheinlichkeiten nicht ändern, aber für Zufallsexperimente ohne Zurücklegen kann es durchaus sinnvoll sein.

Finales Pfadmultiplikationsregel Quiz

Frage

Was ist eine bedingte Wahrscheinlichkeit?

Antwort anzeigen

Antwort

Die bedingte Wahrscheinlichkeit ist die Wahrscheinlichkeit, dass ein Ereignis eintritt, nachdem ein anderes Ereignis bereits eingetreten ist. Sie wird als P geschrieben.

Frage anzeigen

Frage

Was ist eine einfache Wahrscheinlichkeit?

Antwort anzeigen

Antwort

Bei der einfachen Wahrscheinlichkeit haben alle möglichen Ereignisse die gleiche Chance, einzutreten. Jede Wahrscheinlichkeit liegt zwischen 0 und 1 und in Summe ergeben alle Wahrscheinlichkeiten immer 1. Sie wird als p geschrieben.

Frage anzeigen

Frage

Was musst du mit den Wahrscheinlichkeiten eines Pfades machen, um zum Ergebnis zu kommen?

Antwort anzeigen

Antwort

dividieren

Frage anzeigen

Frage

Wie kannst du dir merken, wann du welche Pfadregel brauchst?

Antwort anzeigen

Antwort

1 Pfad = 1. Pfadregel

2 oder mehr Pfade = 2. Pfadregel

Frage anzeigen

Frage

Was ist der Unterschied zwischen einem mehrstufigen Zufallsexperiment mit Zurücklegen und einem ohne Zurücklegen?

Antwort anzeigen

Antwort

Beim Zufallsexperiment mit Zurücklegen hast du für jeden Durchgang dieselben Ausgangbedingungen. Die einfachen Wahrscheinlichkeiten ändern sich also nicht. Werden die gezogenen Schafe, Kugeln oder mit was du das Experiment durchführst, nicht zurückgelegt, musst du aufpassen, wie viele Objekte im darauffolgenden Durchgang noch vorhanden sind und die Wahrscheinlichkeiten neu ausrechnen. Am besten du zeichnest dir für diesen Fall ein Baumdiagramm, damit du nicht durcheinander kommst.

Frage anzeigen

Frage

Warum hat ein mehrstufiges Zufallsexperiment eine bedingte Wahrscheinlichkeit?

Antwort anzeigen

Antwort

Beim mehrstufigen Zufallsexperiment geschieht ein Ereignis unter der Bedingung, dass ein bestimmtes anderes Ereignis bereits eingetreten ist.

Frage anzeigen

Frage

Wie kannst du dir die 1. Pfadregel herleiten?

Antwort anzeigen

Antwort

Indem du dir ein Baumdiagramm erstellst, die einfachen Wahrscheinlichkeiten einträgst und nachrechnest, wie du auf die richtige Wahrscheinlichkeit kommst. Denn alle Wahrscheinlichkeiten der Ereignisse einer Ebene müssen zusammen immer 1 ergeben.

Frage anzeigen

Frage

Sarah möchte ein Babykätzchen adoptieren. Im Wurf sind 2 getigerte und 3 einfarbige Kätzchen. Die Farbe ist ihr egal und sie wählt zufällig 2 davon aus. Wenn du nun die Wahrscheinlichkeit ausrechnest, dass sie ein getigertes und ein einfarbiges auswählt, spielt die Reihenfolge eine Rolle?

Antwort anzeigen

Antwort

Nein, man kommt mit beiden Reihenfolgen auf dasselbe Ergebnis.

Frage anzeigen

Frage

Jonas behauptet: "Bei einem mehrstufigen Zufallsexperiment mit 2 Ereignissen ist es wahrscheinlicher, dass bei 3 Durchgängen diese beiden abwechselnd eintreffen, als 3 mal hintereinander das selbe Ereignis."

Hat er Recht?

Antwort anzeigen

Antwort

Nein, es ist egal. Beide Varianten haben dieselbe Wahrscheinlichkeit.

Frage anzeigen
Mehr zum Thema Pfadmultiplikationsregel
60%

der Nutzer schaffen das Pfadmultiplikationsregel Quiz nicht! Kannst du es schaffen?

Quiz starten

Finde passende Lernmaterialien für deine Fächer

Alles was du für deinen Lernerfolg brauchst - in einer App!

Lernplan

Sei rechtzeitig vorbereitet für deine Prüfungen.

Quizzes

Teste dein Wissen mit spielerischen Quizzes.

Karteikarten

Erstelle und finde Karteikarten in Rekordzeit.

Notizen

Erstelle die schönsten Notizen schneller als je zuvor.

Lern-Sets

Hab all deine Lermaterialien an einem Ort.

Dokumente

Lade unzählige Dokumente hoch und habe sie immer dabei.

Lern Statistiken

Kenne deine Schwächen und Stärken.

Wöchentliche

Ziele Setze dir individuelle Ziele und sammle Punkte.

Smart Reminders

Nie wieder prokrastinieren mit unseren Lernerinnerungen.

Trophäen

Sammle Punkte und erreiche neue Levels beim Lernen.

Magic Marker

Lass dir Karteikarten automatisch erstellen.

Smartes Formatieren

Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.

Gerade angemeldet?

Ja
Nein, aber ich werde es gleich tun

Melde dich an für Notizen & Bearbeitung. 100% for free.