StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
Americas
Europe
Mithilfe der Kombinatorik kannst Du in der Stochastik beispielsweise herausfinden, wie viele unterschiedliche Anordnungen Du mit \(8\) verschiedenen Bonbons bilden kannst. Dabei lässt sich das händische Abzählen von Möglichkeiten durch Kombinatorik Formeln ersetzen. In dieser Erklärung findest Du sowohl eine Definition und Erklärung der Kombinatorik, als auch eine Übersicht der einzelnen Abzählmethoden in einer Kombinatorik Tabelle. Am Ende kannst Du…
Entdecke über 200 Millionen kostenlose Materialien in unserer App
Speicher die Erklärung jetzt ab und lies sie, wenn Du Zeit hast.
SpeichernLerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmeldenMithilfe der Kombinatorik kannst Du in der Stochastik beispielsweise herausfinden, wie viele unterschiedliche Anordnungen Du mit \(8\) verschiedenen Bonbons bilden kannst. Dabei lässt sich das händische Abzählen von Möglichkeiten durch Kombinatorik Formeln ersetzen. In dieser Erklärung findest Du sowohl eine Definition und Erklärung der Kombinatorik, als auch eine Übersicht der einzelnen Abzählmethoden in einer Kombinatorik Tabelle. Am Ende kannst Du Dein Wissen zur Kombinatorik direkt noch an Aufgaben mit Lösungen testen.
Wie viele mögliche Anordnungen kannst Du denn mit \(8\) verschiedenfarbigen Bonbons bilden?
Um das herauszufinden, können alle \(8\) Bonbons beispielsweise so oft neu angeordnet werden, bis sich schließlich alle Möglichkeiten ermitteln lassen.
Eine Zusammenfassung von \(n\) Objekten in einer bestimmten Reihenfolge wird als \(n\)-Tupel bezeichnet. So ist die Anordnung \(({\color{#00DCB4}grün},\, {\color{#FA3273}rot},\, {\color{#8363E2}lila})\) ein Beispiel für ein \(3\)-Tupel aus verschiedenen Farben.
Um das händische Abzählen zu umgehen, kannst Du Dich in der Kombinatorik verschiedener Hilfsmittel bedienen.
Mithilfe der Kombinatorik kannst Du verschiedene Abzählmethoden unterscheiden und sogar durch Formeln die entsprechende Anzahl an Möglichkeiten ermitteln.
Durch Urnenmodelle lassen sich Auswahlprozesse gedanklich veranschaulichen. Dabei werden Kugeln aus einer Urne entnommen und so als Zufallsexperiment simuliert.
Allgemein kann zusammengefasst werden:
Die Kombinatorik als Teilgebiet der Stochastik beschäftigt sich mit unterschiedlichen Abzählmethoden und der Berechnung der Anzahl der Möglichkeiten. Dabei wird zwischen Permutationen, Kombinationen und Variationen unterschieden.
Wie sich aus der Definition entnehmen lässt, begegnen Dir in der Kombinatorik im Allgemeinen drei verschiedene Abzählmethoden:
Aber was genau unterscheidet diese Abzählmethoden voneinander und welche Formeln kannst Du dazu nutzen? Im nächsten Abschnitt findest Du eine Übersicht über all diese Auswahlprozesse.
Es wird dabei nicht nur zwischen den drei Abzählmethoden Permutation, Variation und Kombination unterschieden, sondern noch weiter sortiert zwischen „ohne Wiederholung“ und „mit Wiederholung“. Dadurch ergeben sich:
In den einzelnen Erklärungen findest Du alle Informationen und Eigenschaften dieser Abzählmethoden.
Um die Unterscheidung besser nachvollziehen zu können, zunächst ein kleines Beispiel.
In einem Gefäß befinden sich \(14\) Bonbons, die zur Ermittlung von Abzählmethoden verwendet werden.
Zu bestimmen ist die Abzählmethode, wenn ...
\(a)\) ... nacheinander alle \(14\) Bonbons aus dem Gefäß entnommen und in einer bestimmten Reihenfolge angeordnet werden, wobei alle \(14\) Bonbons voneinander unterscheidbar sind.
\(b)\) ... nacheinander \(5\) Bonbons aus dem Gefäß entnommen werden, wobei das gezogene Bonbon nach jedem Zug wieder zurück in das Gefäß gelegt wird. Hierbei spielt die Reihenfolge der Bonbons keine Rolle.
Lösung
\(a)\) Wenn alle \(n=14\) Bonbons entnommen werden, handelt es sich um eine Permutation. Da alle Süßigkeiten voneinander unterscheidbar sind, tritt kein Element mehrfach auf und es muss eine Permutation ohne Wiederholung sein.
\(b)\) Es werden hier lediglich \(k=5\) Bonbons entnommen, also eine Stichprobe. Somit kann es nur eine Variation oder Kombination sein. Da die Reihenfolge aber keine Rolle spielt, handelt es sich um eine Kombination. Durch das Zurücklegen der Bonbons nach jedem Zug kann jedes Bonbon erneut gezogen werden. In diesem Fall lässt sich die Abzählmethode Kombination mit Wiederholung ermitteln.
Zusammengefasst kannst Du Dich also bei der Frage nach der Abzählmethode an folgenden Fragen orientieren:
Hast Du die entsprechende Abzählmethode ermittelt, so gibt sie aber noch keinen Aufschluss über die Anzahl der Permutationen, Kombinationen oder Variationen. Im nächsten Abschnitt kannst Du anhand einer Tabelle die verschiedenen Formeln nachschlagen.
Um die Anzahlen der Abzählmethoden rechnerisch ermitteln zu können, lassen sich aus dem sogenannten allgemeinen Zählprinzip verschiedene Formeln ableiten.
In der Erklärung „Produktregel Kombinatorik“ kannst Du alles rund um das allgemeine Zählprinzip nachlesen.
Die nachfolgende Tabelle zeigt Dir eine kurze Übersicht über die entsprechenden Formeln der jeweiligen Abzählmethoden.
Stichprobe | ohne Wiederholung | mit Wiederholung | |
Permutation | nein | \[n!\] | \[\dfrac{n!}{k_1!\cdot k_2!\,\cdot\, ...\, \cdot \,k_r!}\] |
Variation | ja, geordnet | \[\dfrac{n!}{(n-k)!}\] | \[n^k\] |
Kombination | ja, ungeordnet | \[\left(\begin{array}{c} n \\ k\\\end{array}\right)\] | \[\left(\begin{array}{c} n+k-1 \\ k\\\end{array}\right)\] |
Der Ausdruck \(\left(\begin{array}{cc} n \\ k\end{array}\right)\) wird übrigens als Binomialkoeffizient bezeichnet. Mehr darüber kannst Du in der Erklärung „Binomialkoeffizient Kombinatorik“ nachlesen.
Wie Du diese Formeln anwendest, erfährst Du in jeweiligen Erklärungen zur „Permutation“, „Kombinationen“ und „Variation“. Die Tabelle hier soll Dir nur einen kleinen Überblick über die verschiedenen Abzählmethoden und ihre Formeln geben.
Kannst Du bereits alle Abzählmethoden voneinander unterscheiden und einordnen? Dann teste Dein Wissen gerne an den nachfolgenden Übungsaufgaben!
Benutze als Hilfestellung zur Lösung der Aufgaben die graphische Darstellung aus Abbildung \(2\) oder orientiere Dich an den entsprechenden Hilfsfragen.
Beim Regal einräumen werden alle \(7\) farbigen Tassen zurück in das Regal gestellt.
\(({\color{#1478C8}blau},\,{\color{#00DCB4}grün},\, {\color{#FA3273}rot},\, {\color{#FFCD00}gelb},\, {\color{#8363E2}lila},\, {\color{#FA3273}rot} ,\, {\color{#5E7387}grau})\)
\(a)\) Bestimme die Abzählmethode.
\(b)\) Nenne eine mögliche Anordnung.
Lösung
\(a)\) Bei der Abzählmethode handelt es sich um eine Permutation, denn alle \(n=7\) Elemente werden in einer bestimmten Reihenfolge angeordnet. Die rote Tasse ist mehrfach vorhanden, weshalb es eine Permutation mit Wiederholung ist.
\(b)\) Ein \(7\)-Tupel wäre hier beispielsweise: \(({\color{#1478C8}blau},\, {\color{#FFCD00}gelb},\, {\color{#FA3273}rot},\, {\color{#FA3273}rot},\, {\color{#00DCB4}grün},\, {\color{#5E7387}grau}, \, {\color{#8363E2}lila})\).
Aus den Zahlen \(1\) bis \(9\) werden vierstellige Zahlen gebildet, wie beispielsweise \(2168\). Bestimme die entsprechende Abzählmethode, wenn jede Zahl in der Tausender-Zahl nur einmalig verwendet werden darf.
Lösung
Insgesamt stehen \(n=9\) Zahlen zur Verfügung. Es werden jedoch nur \(k=4\) unterschiedliche Zahlen ausgewählt. Die Reihenfolge der Zahlen spielt hierbei eine Rolle, da sich beim Vertauschen andere Tausender bilden lassen. Somit handelt es sich hierbei um eine Variation ohne Wiederholung.
In den zugehörigen Karteikarten findest Du noch weitere Übungsaufgaben rund um das Themengebiet der Kombinatorik.
Ist die Reihenfolge von Bedeutung oder nicht?
Darf ein Element mehrfach vorkommen oder nicht?
Stichprobe | ohne Wiederholung | mit Wiederholung | |
Permutation | nein | \[n!\] | \[\dfrac{n!}{k_1!\cdot k_2!\,\cdot\, ...\, \cdot \,k_r!}\] |
Variation | ja, geordnet | \[\dfrac{n!}{(n-k)!}\] | \[n^k\] |
Kombination | ja, ungeordnet | \[\left(\begin{array}{c} n \\ k\\\end{array}\right)\] | \[\left(\begin{array}{c} n+k-1 \\ k\\\end{array}\right)\] |
Die Kombinatorik beschäftigt sich mit unterschiedlichen Abzählmethoden (Permutation, Kombination und Variation). Über verschiedene Formeln kann die Anzahl rechnerisch ermittelt werden (beispielsweise die Anzahl der Kombinationen), sodass kein händisches Abzählen notwendig ist.
In der Kombinatorik steht n für die Anzahl aller Elemente aus der Grundmenge. Aus dieser Menge kann ebenfalls eine Stichprobe mit nur k Elementen ausgewählt werden.
Die Kombinatorik ist ein Teilbereich in der Stochastik, der sich mit unterschiedlichen Abzählmethoden beschäftigt sowie die Bestimmung der Anzahlen. Zu unterscheiden sind Permutationen, Kombinationen und Variationen.
Die Anzahl der Möglichkeiten hängt davon ab, um welche Abzählmethode es sich handelt. Es wird zwischen Permutation, Kombination und Variation unterschieden. Zudem ist noch zwischen „ohne Wiederholung“ und „mit Wiederholung“ zu unterscheiden.
Wie möchtest du den Inhalt lernen?
Wie möchtest du den Inhalt lernen?
Kostenloser mathe Spickzettel
Alles was du zu . wissen musst. Perfekt zusammengefasst, sodass du es dir leicht merken kannst!
Sei rechtzeitig vorbereitet für deine Prüfungen.
Teste dein Wissen mit spielerischen Quizzes.
Erstelle und finde Karteikarten in Rekordzeit.
Erstelle die schönsten Notizen schneller als je zuvor.
Hab all deine Lermaterialien an einem Ort.
Lade unzählige Dokumente hoch und habe sie immer dabei.
Kenne deine Schwächen und Stärken.
Ziele Setze dir individuelle Ziele und sammle Punkte.
Nie wieder prokrastinieren mit unseren Lernerinnerungen.
Sammle Punkte und erreiche neue Levels beim Lernen.
Lass dir Karteikarten automatisch erstellen.
Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.
Melde dich an für Notizen & Bearbeitung. 100% for free.
Speichere Erklärungen in deinem persönlichen Bereich und greife jederzeit und überall auf sie zu!
Mit E-Mail registrieren Mit Apple registrierenDurch deine Registrierung stimmst du den AGBs und der Datenschutzerklärung von StudySmarter zu.
Du hast schon einen Account? Anmelden