Login Anmelden

Select your language

Suggested languages for you:
StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
|
|

Bernoulli Formel

Bernoulli Formel

Eine Münze wird fünfmal geworfen und Du bekommst einen Gewinn, wenn genau viermal Kopf erscheint. Ein Gewinn wäre ja toll, aber wie groß ist Deine Gewinnwahrscheinlichkeit? Du kannst sie mit der Bernoulli Formel der Stochastik berechnen, weil der mehrmalige Münzwurf eine Bernoulli-Kette ist.

Wie hoch nun Deine Gewinnwahrscheinlichkeit in diesem Beispiel ist und eine allgemeine Erklärung zur Bernoulli-Formel findest Du in dieser Erklärung.

Bernoulli Formel – Grundlagen: Bernoulli-Experiment

Eine Bernoulli-Kette in der Stochastik entsteht durch die mehrmalige Durchführung eines Bernoulli-Experiments. Doch was ist noch mal ein Bernoulli Experiment in der Wahrscheinlichkeitsrechnung?

Ein Bernoulli-Experiment ist ein Zufallsexperiment mit nur zwei möglichen Ergebnissen und Trefferwahrscheinlichkeit \(p\).

Eines der möglichen Ergebnisse wird dabei als "Treffer" bezeichnet, das andere Ergebnis als "Niete" oder "kein Treffer".

Manchmal wird statt "Treffer" und "kein Treffer" auch von "Erfolg" und "kein Erfolg" gesprochen.

Das einmalige Werfen einer Münze ist ein Bernoulli-Experiment. "Kopf" kann dabei etwa der Treffer sein, "Zahl" die Niete.

Aber auch das Werfen eines Würfels kann ein Bernoulli-Experiment sein. Als Ergebnis ist nicht die genaue gewürfelte Zahl von Bedeutung, sondern beispielsweise nur "Sechs" und "keine Sechs".

Bernoulli Formel – Stochastik einfach erklärt

Häufig wird ein Bernoulli-Experiment, wie zum Beispiel der Münzwurf, aber nicht nur einmal durchgeführt.

Bernoulli-Kette

Durch das mehrmalige Durchführen des Bernoulli-Experiments entsteht eine Bernoulli-Kette.

Eine Bernoulli-Kette bezeichnet in der Stochastik das mehrmalige unabhängige Durchführen eines Bernoulli-Experiments mit Trefferwahrscheinlichkeit \(p\). Die Anzahl der Durchführungen \(n\) wird als Länge der Bernoulli-Kette bezeichnet.

Wichtig ist, dass die mehrmaligen Durchführungen unabhängig voneinander sind. Das bedeutet, dass sich die Trefferwahrscheinlichkeit \(p\) nicht ändert. Nur dann handelt es sich in der Wahrscheinlichkeitsrechnung um eine Bernoulli-Kette.

Das mehrmalige Ziehen einer Kugel aus einem Sack kann eine Bernoulli-Kette sein. Die Zufallsexperimente sind aber nur unabhängig voneinander, wenn die Kugel jedes Mal wieder zurückgelegt wird. Außerdem darf es nur zwei verschiedene Ergebnisse geben: Treffer und kein Treffer. Dies ist beispielsweise gewährleistet, wenn im Sack nur rote und weiße Kugeln sind und eine rote Kugel einen Treffer bedeutet.

Es könnten auch noch weitere Farben im Sack sein. Dann ist es trotzdem weiterhin eine Bernoulli-Kette, wenn eine rote Kugel einen Treffer bedeutet. Wird eine andersfarbige Kugel gezogen, ist dies "kein Treffer".

Zusammengefasst hat eine Bernoulli-Kette in der Stochastik die folgenden Eigenschaften:

  • Im Einzel-Experiment gibt es nur 2 mögliche Ergebnisse.
  • Das Einzel-Experiment wird n-mal unabhängig voneinander wiederholt.
  • Es ist nur die Anzahl der Treffer von Bedeutung und nicht, in welcher Reihenfolge die Treffer auftreten.

Bernoulli Formel berechnen

Mit der Bernoulli Formel kannst Du nun die Wahrscheinlichkeit für eine bestimmte Trefferanzahl in einer Bernoulli-Kette berechnen.

Für eine Bernoulli-Kette der Länge \(n\) mit Trefferwahrscheinlichkeit \(p\) ist die Wahrscheinlichkeit für genau \(k\) Treffer:

$$P(X=k)=\begin{pmatrix} n \\ k \end{pmatrix} · p^k ·(1-p)^{n-k}$$

Diese Formel wird Bernoulli Formel genannt.

Dabei ist \(\begin{pmatrix} n \\ k \end{pmatrix} \) der Binomialkoeffizient in der Formel von Bernoulli. Du kannst ihn direkt mit deinem Taschenrechner mit der Taste "nCr" bestimmen oder mithilfe der Formel berechnen:

$$\begin{pmatrix} n \\ k \end{pmatrix} = \frac{n!}{k!(n-k)!}$$

In der Erklärung "Binomialkoeffizient" kannst Du mehr hierzu erfahren.

Ist ein Zufallsexperiment eine Bernoulli-Kette und Du verwendest die Bernoulli Formel zur Berechnung der Wahrscheinlichkeit, dann ist die Wahrscheinlichkeitsverteilung eine Binomialverteilung. Die Binomialverteilung ist eine der bekanntesten Wahrscheinlichkeitsverteilungen in der Stochastik.

Bei einer Binomialverteilung wird die Wahrscheinlichkeit für \(k\) Treffer genau mit der Formel von Bernoulli berechnet.

Bernoulli Formel – Beispiel

Im Einstiegsbeispiel war die Frage, wie hoch Deine Gewinnwahrscheinlichkeit beim fünfmaligen Münzwurf ist, wenn genau viermal Kopf erscheinen muss. Mit der Bernoulli-Formel kannst Du diese Wahrscheinlichkeit berechnen.

Zuerst wird kurz überprüft, ob das Zufallsexperiment tatsächlich eine Bernoulli-Kette ist: Es gibt nur die Möglichkeiten "Kopf" (Treffer) und "Zahl" (kein Treffer). Die jeweiligen Münzwürfe sind unabhängig voneinander mit der Trefferwahrscheinlichkeit \(p=0{,}5\).

Daher handelt es sich um eine Bernoulli-Kette und die Bernoulli Formel kann angewendet werden.

  • Die Münze wird fünfmal geworfen: \(n=5\)
  • Es sollen genau vier Treffer erzielt werden: \(k=4\)

Diese Werte kannst Du in die Formel einsetzen:

\begin{align}P(X=4) & =\begin{pmatrix} 5 \\ 4 \end{pmatrix} · 0{,}5^4·(1-0{,}5)^{5-4} \\[0.2cm] & = \begin{pmatrix} 5 \\ 4 \end{pmatrix} ·0{,}5^4·0{,}5^1 \\[0.2cm] & = 0{,}1563\end{align}

Die Wahrscheinlichkeit für genau viermal Kopf in dieser Bernoulli-Kette ist \(0{,}1563\).

Bernoulli Formel – Herleitung

Warum ist die Bernoulli Formel eigentlich genau so aufgebaut und wieso wird damit die Wahrscheinlichkeit für genau \(k\) Treffer in einer Bernoulli-Kette bei der Binomialverteilung berechnet?

Um den Aufbau der Bernoulli Formel nachvollziehen zu können, sieh Dir das folgende Beispiel an.

Ein Würfel wird dreimal geworfen. Du erzielst einen Treffer, wenn Du eine Sechs wirfst. Dann ist die Trefferwahrscheinlichkeit \(p=\frac{1}{6}\). Diese Bernoulli-Kette kannst Du in einem Baumdiagramm darstellen.

Bernoulli Formel Beispiel Herleitung StudySmarterAbbildung 1: Baumdiagramm für n=3 und p=1/6

Im Baumdiagramm kannst Du erkennen, dass es genau drei Möglichkeiten gibt, genau eine sechs zu werfen, nämlich \(\{6,\overline{6},\overline{6}\},\{\overline{6},6,\overline{6}\},\{\overline{6},\overline{6},6\}\).

In der Bernoulli Formel wird die Anzahl an Möglichkeiten mit dem Binomialkoeffizienten berechnet.

Es ist \(\begin{pmatrix} 3 \\ 1 \end{pmatrix}=3 \).

Für jede dieser drei Möglichkeiten ist die Wahrscheinlichkeit dieselbe.

\begin{align}P(\{6,\overline{6},\overline{6}\})&=\frac{1}{6}·\frac{5}{6}·\frac{5}{6} =\frac{25}{216}\\ P(\{\overline{6},6,\overline{6}\}&=\frac{5}{6}·\frac{1}{6}·\frac{5}{6} =\frac{25}{216}\\ P(\{\overline{6},\overline{6},6\}&=\frac{5}{6}·\frac{5}{6}·\frac{1}{6} =\frac{25}{216}\\ \end{align}

Anders ausgedrückt kannst Du auch sagen:\begin{array}[rcccccc]XP(\{6,\overline{6},\overline{6}\})&=&\frac{1}{6}&·&\frac{5}{6}&·&\frac{5}{6} \\&=&p&·&(1-p)&·&(1-p) \\ &=&p^1&·&(1-p)^2 \\ &=&p^k&·&(1-p)^{n-k}\end{array}

Die Wahrscheinlichkeit für eine dieser Möglichkeiten ist also genau \(p^k·(1-p)^{n-k}\).

Im Beispiel kannst Du erkennen, dass sich die Bernoulli Formel für eine Bernoulli-Kette aus der Anzahl der Möglichkeiten multipliziert mit der Wahrscheinlichkeit für eine dieser Möglichkeiten zusammensetzt.

Der Binomialkoeffizient \(\begin{pmatrix} n \\ k \end{pmatrix}\) gibt die Anzahl an Möglichkeiten für \(k\) Treffer an.

\(p^k·(1-p)^{n-k}\) berechnet die Wahrscheinlichkeit für eine Möglichkeit.

Bernoulli Formel – höchstens k Treffer

Manchmal ist bei einer Binomialverteilung in der Stochastik nicht die Wahrscheinlichkeit für genau \(k\) Treffer gesucht, sondern zum Beispiel für höchstens \(k\) Treffer:

$$P(X \leq k)$$

Auch dann kann Dir, zumindest für kleine \(k\), die Bernoulli-Formel behilflich sein.

So setzt sich etwa die Wahrscheinlichkeit für höchstens 2 Treffer aus den Wahrscheinlichkeiten für genau 0, 1 und 2 Treffern zusammen.

$$P(X \leq 2)=P(X=0)+P(X=1)+P(X=2)$$

Für größere \(k\) liest Du die summierte Wahrscheinlichkeit häufig aus Tabellen ab. Wie das funktioniert und wie Du vorgehst, wenn es zum Beispiel mindestens \(k\) Treffer sein sollen, erfährst Du in der Erklärung "Kumulierte Binomialverteilung".

Bernoulli Formel – Aufgaben

Mit diesen Aufgaben kannst Du das Anwenden der Bernoulli Formel bei der Binomialverteilung üben.

Aufgabe 1

Entscheide jeweils, ob es sich um eine Bernoulli-Kette handelt und somit die Bernoulli Formel angewendet werden darf.

  1. Ein Würfel wird mehrmals geworfen. Es wird die jeweilige Augenzahl notiert und als Punktzahl zusammengerechnet.
  2. Drehen eines Glücksrads mit roten, gelben und blauen Feldern. Bei einem roten Feld erhält man einen Gewinn, ansonsten nichts.
  3. Ein Multiple-Choice-Test wird zufällig angekreuzt. Jede Frage hat vier Antwortmöglichkeiten, von denen genau eine richtig ist.

Lösung

  1. Die mehrmaligen Würfe sind unabhängig voneinander, aber es gibt mehr als zwei mögliche Ergebnisse für jedes einzelne Zufallsexperiment. Deswegen handelt es sich nicht um eine Bernoulli-Kette.
  2. Es ist nur von Bedeutung, ob ein Treffer erzielt wird (rotes Feld) oder kein Treffer (blaues und gelbes Feld). Es gibt daher genau zwei mögliche Ergebnisse bei einer Durchführung. Die einzelnen Durchführungen sind unabhängig voneinander. Eine Bernoulli-Kette liegt vor.
  3. Dadurch, dass der Test zufällig angekreuzt wird, ist die Wahrscheinlichkeit für einen Treffer bei jeder Frage genau \(p=\frac{1}{4}\). Die Beantwortung der einen Frage hat keinen Einfluss auf die nächste Frage. Die Fragen sind unabhängig voneinander. Es gibt nur zwei relevante Ergebnisse bei jeder Durchführung: Treffer und kein Treffer. Es handelt sich um eine Bernoulli-Kette.

Aufgabe 2

Ein Multiple-Choice-Test mit 10 Fragen wird zufällig angekreuzt. Jede Frage hat genau 4 Antwortmöglichkeiten. Berechne die Wahrscheinlichkeit für genau 5 richtige Antworten.

Lösung

Es handelt sich um eine Bernoulli-Kette und die Bernoulli Formel kann angewendet werden.

Es ist \(n=10\) und \(p= \frac{1}{4}=0{,}25\), da es 4 Antwortmöglichkeiten gibt. Gesucht ist die Wahrscheinlichkeit für \(k=5\) Treffer. Anwenden der Bernoulli Formel ergibt:

\begin{align} P(X=5)&=\begin{pmatrix} 10 \\ 5 \end{pmatrix} · 0{,}25^5·(1-0{,}25)^{10-5} \\[0.2cm] &= \begin{pmatrix} 10 \\ 5 \end{pmatrix} · 0{,}25^5·0{,}75^5 \\[0.2cm] & = 0{,}0584 \end{align}

Die Wahrscheinlichkeit für genau 5 richtige Antworten in dieser Bernoulli-Kette ist \(0{,}0584\) und damit sehr gering.

Bernoulli Formel – Das Wichtigste

  • Ein Bernoulli-Experiment ist ein Zufallsexperiment mit zwei möglichen Ausgängen: Treffer und kein Treffer
  • Wird ein Bernoulli-Experiment mehrmals unabhängig voneinander durchgeführt, entsteht eine Bernoulli-Kette.
  • Für eine Bernoulli-Kette der Länge \(n\) mit Trefferwahrscheinlichkeit \(p\) kann die Wahrscheinlichkeit für genau \(k\) Treffer mit der Bernoulli Formel berechnet werden:$$P(X=k)=\begin{pmatrix} n \\ k \end{pmatrix} · p^k·(1-p)^{n-k}$$

Nachweise

  1. Becker et al. (2016). Formelsammlung bis zum Abitur - Mathematik - Physik - Astronomie - Chemie - Biologie - Informatik. Duden Schulbuchverlag.
  2. Baum et al. (2009). Lambacher Schweizer 11/12, Mathematik für Gymnasien, Gesamtband Oberstufe Niedersachsen. Ernst Klett Verlag.

Häufig gestellte Fragen zum Thema Bernoulli Formel

Von einer Bernoulli-Kette wird gesprochen, wenn ein Bernoulli-Experiment mehrmals unabhängig wiederholt wird.

Ein Bernoulli-Experiment ist ein Zufallsexperiment mit nur zwei möglichen Ergebnissen: Treffer und kein Treffer

Dieses Bernoulli-Experiment wird mehrmals durchgeführt, wobei die Trefferwahrscheinlichkeit immer dieselbe ist.

Die Bernoulli Formel gibt die Wahrscheinlichkeit für genau k Treffer in einer Bernoulli-Kette an.

Mit der Bernoulli Formel kannst Du also die Wahrscheinlichkeit für eine bestimmte Trefferanzahl berechnen, wenn Du die Kettenlänge n und die Trefferwahrscheinlichkeit p kennst.

Wichtige Merkmale einer Bernoulli-Kette sind:

Das Einzel-Experiment hat nur zwei mögliche Ergebnisse.

Das Einzel-Experiment wird n-mal unabhängig voneinander durchgeführt.

Du rechnest die Bernoulli Formel aus, indem Du zuerst für die Kettenlänge n, die Trefferwahrscheinlichkeit p und die Trefferanzahl k Werte einsetzt.

Dann berechnest Du den Binomialkoeffizienten und multiplizierst ihn mit den Wahrscheinlichkeiten.

Finales Bernoulli Formel Quiz

Frage

Wähle alle Bedingungen aus, die für eine Bernoulli-Kette erfüllt ein müssen.

Antwort anzeigen

Antwort

Das Einzel-Experiment hat nur zwei mögliche Ergebnisse.

Frage anzeigen

Frage

Gib das fehlende Wort an:


Wird ein Bernoulli-Experiment mehrmals unabhängig durchgeführt, entsteht eine ....

Antwort anzeigen

Antwort

Bernoulli-Kette

Frage anzeigen

Frage

Wähl die Bedeutung des \(k\) in der Bernoulli Formel aus.


$$P(X=k)=\begin{pmatrix} n \\ k \end{pmatrix} ·p^k·(1-p)^{n-k}$$

Antwort anzeigen

Antwort

Trefferanzahl

Frage anzeigen

Frage

Wähl die Bedeutung des Binomialkoeffizienten \(\begin{pmatrix} n \\ k \end{pmatrix}\) in der Bernoulli Formel aus.

$$P(X=k)=\begin{pmatrix} n \\ k \end{pmatrix} ·p^k·(1-p)^{n-k}$$

Antwort anzeigen

Antwort

Anzahl an Kombinationsmöglichkeiten

Frage anzeigen

Frage

Wähl die Formel für den Binomialkoeffizienten \(\begin{pmatrix} n \\ k \end{pmatrix}\) aus.

Antwort anzeigen

Antwort

$$ \frac{n!}{k!(n-k)!} $$

Frage anzeigen

Frage

Wähl alle Beispiele aus, bei denen es sich um eine Bernoulli-Kette handelt.

Antwort anzeigen

Antwort

mehrmaliges Ziehen einer Kugel mit Zurücklegen, im Sack sind rote und gelbe Kugeln

Frage anzeigen

Frage

Gib die Bernoulli Formel an.

Antwort anzeigen

Antwort

$$P(X=k)=\begin{pmatrix} n \\ k \end{pmatrix} ·p^k·(1-p)^{n-k}$$

Frage anzeigen

Frage

Gib die Länge der Bernoulli-Kette in dieser Bernoulli Formel an.

$$P(X=3)=\begin{pmatrix} 8 \\ 3 \end{pmatrix} ·0{,}2^3·(1-0{,}2)^{8-3}$$

Antwort anzeigen

Antwort

8

Frage anzeigen

Frage

Lies die Trefferwahrscheinlichkeit \(p\) in einem Bernoulli-Experiment aus dieser Bernoulli Formel ab.

$$P(X=5)=\begin{pmatrix} 10 \\ 2 \end{pmatrix} ·0{,}3^2·(1-0{,}3)^{10-2}$$

Antwort anzeigen

Antwort

0,3

Frage anzeigen

Frage

Beschreibe, welche Eigenschaften erfüllt sein müssen, damit es sich um eine Bernoulli-Kette handelt.

Antwort anzeigen

Antwort

Ein Zufallsexperiment muss mehrmals unabhängig durchgeführt werden. Das Zufallsexperiment muss ein Bernoulli-Experiment sein. Das bedeutet, dass es nur zwei mögliche Ergebnisse gibt: Treffer und kein Treffer

Frage anzeigen

Frage

Berechne die Wahrscheinlichkeit für genau \(k=3\) Treffer in einer Bernoulli-Kette der Länge \(n=6\) und Trefferwahrscheinlichkeit \(p=0{,}4\).

Antwort anzeigen

Antwort

\begin{align}
P(X=3) &=\begin{pmatrix} 6 \\ 3 \end{pmatrix} · 0{,}4^3 · (1-0{,}4)^{6-3} \\ 
&= \begin{pmatrix} 6 \\ 3 \end{pmatrix} · 0{,}4^3 · 0{,}6^3 \\ 
&=0{,}2765 
\end{align}

Frage anzeigen

Frage

Bestimme die Anzahl an Kombinationsmöglichkeiten, um bei einer Bernoulli-Kette der Länge \(n=15\) genau \(k=7\) Treffer zu erzielen.

Antwort anzeigen

Antwort

Der Binomialkoeffizient \( \begin{pmatrix} n \\ k \end{pmatrix} \) bestimmt genau die Anzahl an Möglichkeiten für \(k\) Treffer bei einer Bernoulli-Kette der Länge \(n\).

Es ist:
\begin{align} 
\begin{pmatrix} 15 \\ 7 \end{pmatrix} &= \frac{15!}{7!(15-7)!} \\ 
&=\frac{15!}{7!·8!} \\
&=6435 
\end{align}

Frage anzeigen

Frage

Berechne die Wahrscheinlichkeit beim fünfmaligen Würfeln genau zwei Einsen zu werfen.

Antwort anzeigen

Antwort

Es handelt sich um eine Bernoulli-Kette der Länge \(n=5\) mit Trefferwahrscheinlichkeit \(p=\frac{1}{6}\). Die Trefferanzahl ist \(k=2\).

\begin{align}
P(X=2) &= \begin{pmatrix} 5 \\ 2 \end{pmatrix} · (\frac{1}{6})^2· (1-\frac{1}{6})^{5-2} \\ 
&=  \begin{pmatrix} 5 \\ 2 \end{pmatrix} · (\frac{1}{6})^2 · (\frac{5}{6})^3 \\ 
&=0{,}1608 
\end{align}

Frage anzeigen

Frage

Berechne die Wahrscheinlichkeit beim Schießen von 10 Elfmetern genau 8 Treffer zu schießen, wenn die Wahrscheinlichkeit für einen Treffer bei dieser Fußballerin \(p=0{,}8\) ist. 

Antwort anzeigen

Antwort

Es handelt sich um eine Bernoulli-Kette der Länge \(n=10\) mit \(p=0{,}8\), da die Schüsse unabhängig voneinander sind und nur Treffer oder kein Treffer als Ergebnis haben.

\begin{align}
P(X=8)&=\begin{pmatrix} 10 \\ 8 \end{pmatrix} · 0{,}8^8 · (1-0{,}8)^{10-8} \\ 
&=\begin{pmatrix} 10 \\ 8 \end{pmatrix} · 0{,}8^8 · (0{,}2)^2 \\
&=0{,}302 
\end{align}

Frage anzeigen

Frage

Erkläre, wieso es sich bei folgender Situation nicht um eine Bernoulli-Kette handelt.


Beim Handball werfen nacheinander zehn verschieden Spieler einen Siebenmeter. Gesucht ist die Wahrscheinlichkeit für sieben Treffer.

Antwort anzeigen

Antwort

Die Siebenmeter werden von verschiedenen Spielern geworfen. Die Würfe sind zwar unabhängig voneinander, aber die Trefferwahrscheinlichkeit ist in jedem Durchgang unterschiedlich.

Denn es ist davon auszugehen, dass die Spieler nicht alle gleich gut und mit derselben Technik werfen.

Frage anzeigen

Mehr zum Thema Bernoulli Formel
60%

der Nutzer schaffen das Bernoulli Formel Quiz nicht! Kannst du es schaffen?

Quiz starten

Finde passende Lernmaterialien für deine Fächer

Alles was du für deinen Lernerfolg brauchst - in einer App!

Lernplan

Sei rechtzeitig vorbereitet für deine Prüfungen.

Quizzes

Teste dein Wissen mit spielerischen Quizzes.

Karteikarten

Erstelle und finde Karteikarten in Rekordzeit.

Notizen

Erstelle die schönsten Notizen schneller als je zuvor.

Lern-Sets

Hab all deine Lermaterialien an einem Ort.

Dokumente

Lade unzählige Dokumente hoch und habe sie immer dabei.

Lern Statistiken

Kenne deine Schwächen und Stärken.

Wöchentliche

Ziele Setze dir individuelle Ziele und sammle Punkte.

Smart Reminders

Nie wieder prokrastinieren mit unseren Lernerinnerungen.

Trophäen

Sammle Punkte und erreiche neue Levels beim Lernen.

Magic Marker

Lass dir Karteikarten automatisch erstellen.

Smartes Formatieren

Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.

Melde dich an für Notizen & Bearbeitung. 100% for free.

Get FREE ACCESS to all of our study material, tailor-made!

Over 10 million students from across the world are already learning smarter.

Get Started for Free
Illustration