Select your language

Suggested languages for you:
Log In Anmelden
StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
|
|

Die All-in-one Lernapp:

  • Karteikarten
  • NotizenNotes
  • ErklärungenExplanations
  • Lernpläne
  • Übungen
App nutzen

Varianz

Save Speichern
Print Drucken
Edit Bearbeiten
Melde dich an und nutze alle Funktionen. Jetzt anmelden
Varianz

In diesem Kapitel beschäftigen wir uns mit dem Thema Varianz. Wenn du auf dem Schlauch stehst, was dieses Thema betrifft, bist du hier genau richtig! Wir erklären dir jetzt worauf es ankommt in der Varianzberechnung:) Das Thema ist dem Fach Mathematik und genauer dem Unterthema Zufallsgrößen zuzuordnen.

Was ist eine Varianz?

Als Vorwissen sollte dir die Wahrscheinlichkeitsverteilung bekannt sein. Die Varianz ist eine Maßzahl mit der du die Wahrscheinlichkeitsrechnung charakterisieren kannst. Mit der Varianz kannst du dir also einen groben Überblick über eine Verteilung verschaffen.

Was beschreibt die Varianz?

Die Varianz ist ein Streuungsparameter. Das heißt, es werden alle Maßzahlen zusammengefasst und es wird eine Aussage über die Streuung einer Verteilung gemacht.

  • Varianz beschreibt die erwartete quadratische Abweichung der Zufallsvariablen von ihrem Erwartungswert

Der Nachteil der Varianz ist, dass sie aufgrund der Quadrierung eine andere Einheit als die beobachteten Messwerte besitzt. Um daraus eine konkrete Aussage herausleiten zu können musst du die Wurzel vom Ergebnis berechnen. In der Praxis wird deswegen oft die Standardabweichung, die eben genau die Wurzel der Varianz ist, herangezogen.

Varianz einer diskreten Verteilung

In den beiden unteren Abbildungen sind zwei Wahrscheinlichkeitsfunktionen dargestellt. Kannst du einen Unterschied zwischen einer kleinen und einer großen Varianz erkennen?

Quelle: Mathebibel.de

Die Realisationen von X sind eng um den Erwartungswert μ = 0 gestreut → kleine Varianz

Quelle: Mathebibel.de

Die Realisation von X sind breit um den Erwartungswert μ = 0 gestreut → große Varianz

Berechnung der Varianz

Ist X eine diskrete Zufallsvariable, so heißt

die Varianz von X.

Dabei steht μX für den Erwartungswert.

Dieser Verschiebungsansatz erleichtert meist die Berechnung der Varianz.

Beispiel 1

Die Zufallsvariable X sei die Augenzahl beim Wurf eines symmetrischen Würfels.

Es gibt sechs möglich Realisationen:

Alle sechs Realisationen haben dieselbe Wahrscheinlichkeit gewürfelt zu werden:

Der Erwartungswert ist μX=E(X)=3,5

  • Varianz berechnen (ohne Verschiebungssatz)

  • Varianz berechnen (mit Verschiebungssatz)

Beispiel 2

Die Zufallsvariable X sei der Gewinn beim Roulette. Wir setzen 1€ auf unsere Glückszahl. Wenn wir gewinnen, erhalten 36€. Unser Gewinn beträgt also 35€, denn 1€ haben wir ja eingesetzt. Zur Erinnerung: Beim Roulette kann man auf die Zahlen 0 bis 36 setzen.

Es gibt zwei Realisationen:

Für die Wahrscheinlichkeiten gilt dann:

Der Erwartungswert ist X=E(X)=−1/37.

  • Varianz berechnen (ohne Verschiebungssatz)

  • Varianz berechnen (mit Verschiebungssatz)

Varianz einer stetigen Verteilung

In den kommenden Abbildungen erkennst du zwei Dichtefunktionen. Kannst du den Unterschied zwischen der kleinen und der großen Varianz?

Die Realisationen von X sind eng um den Erwartungswert μ = 0 gestreut → kleine Varianz

Die Realisationen von X sind breit um den Erwartungswert μ = 0 gestreut → große Varianz

Berechnung der Varianz

Ist X eine stetige Zufallsvariable, so heißt

die Varianz von X.

μX = Erwartungswert und f(x) = Dichtefunktion

Der Verschiebungssatz erleichtert uns die Berechnung der Varianz.

Beispiel 1

Ein Zufallsgenerator erzeugt zufällig eine Zahl zwischen -1 und 1.

Die Dichtefunktion des Zufallsgenerators ist

Der Erwartungswert ist μX=E(X)=0

  • Varianz berechnen (ohne Verschiebungssatz)

  • Varianz berechnen (mit Verschiebungssatz)

Varianz- Das Wichtigste auf einen Blick

Eine Wahrscheinlichkeitsverteilung lässt sich entweder

  • Durch die Verteilungsfunktion oder
  • Die Wahrscheinlichkeitsfunktion (bei diskreten Zufallsvariablen) bzw.
  • Die Dichtefunktion (bei stetigen Zufallsvariablen)

vollständig beschreiben.

Gut gemacht! Nachdem du alles fleißig durchgelesen hast, solltest du nun wissen, wie du die Varianz berechnen kannst. :) Weiter so!

Finales Varianz Quiz

Frage

Berechne den Mittelwert  und die Standardabweichung der gegebenen Häufigkeitsverteilungen.



Antwort anzeigen

Antwort

Verteilung A:

X̅ = 3

s = 7,88


Verteilung B:

X̅ = 3

s = 2,12

Frage anzeigen

Frage

Marc Wettermann arbeit als Meteorologe beim Fernsehen. Zu seinen Aufgaben gehört es statistische Daten des Wetters zu erheben. Darunter versteht sein Arbeitgeber den Mittelwert, die Varianz und die Standardabweichung. Für eine Woche erhält er folgende Werte der Temperatur (Runde auf zwei Stellen nach dem Komma):

Montag: 6,4°C

Dienstag: 6,3°C

Mittwoch: 4,2°C

Donnerstag: 5,0°C

Freitag: 7,3°C

Samstag: 3,2°C

Sonntag: 5,1°C


Bestimme die geforderten Werte für die Woche. Marc gibt diese Aufgabe an seine drei Mitarbeiter, die mit verschiedenen Werten wiederkommen. Welcher der Mitarbeiter hat recht?

Antwort anzeigen

Antwort

Mittelwert: 1,41°C

Varianz: 1,31

Standardabweichung: 1,71°C

Frage anzeigen

Frage

Varianz einer Binomialverteilung!


Ein Glücksrad mit vier gleichgroßen Feldern (rot, blau, gelb, grün) wird 20-mal gedreht.

Die Zufallsvariable X gibt die Anzahl der gedrehten blauen Felder an. Berechne die Varianz dieser Zufallsvariablen!

Antwort anzeigen

Antwort

V(X) = 3,75
Frage anzeigen

Frage

Varianz einer Binomialverteilung


Ein Biathlet trifft mit einer Wahrscheinlichkeit von 1/3. Die Zufallsvariable X beschreibt die Anzahl der Treffer. Bestimme die Varianz bei 20 Schüssen! Wie verändert sich die Varianz bei doppelt so vielen Schüssen?

Antwort anzeigen

Antwort

Frage anzeigen

Frage

Du fährst jeden Tag mit dem Bus in die Schule und schreibst dir jeden Tag auf, wie viel Verspätung der Bus hat. Du erhälst folgende Werte: 


Tag 1: 6 Minuten 

Tag 2: 1 Minute

Tag 3: 4 Minuten

Tag 4: 2 Minuten 

Tag 5: 7 Minuten


  1. Berechne die Varianz
  2. Wie würde sich die Varianz verändern, wenn der Bus an Tag 3 nur 3 Minuten, aber an Tag 5 = 8 Minuten Verspätung hätte?
Antwort anzeigen

Antwort

  1. Die Varianz beträgt 5,2
  2. Die Varianz beträgt 6,8
Frage anzeigen

Frage

Berechne zu den folgenden Wertereihen den Durchschnittswert (D) sowie die Varianz (V)


a. 6, 9, 10, 8, 7

b. 1,1; 0,9; 1,3; 1,3; 1,4

c. 20, 18, 16, 22, 21, 17

Antwort anzeigen

Antwort

a. D=8 ; V= 2

b. D=1,2 ; V=0,032

c. D=19 ; V=4,67

Frage anzeigen

Frage

Berechne zu den folgenden Wertereihen den Durchschnittswert (D) sowie die Varianz (V)


a. 1, 3, 2, 2.5, 1, 2,5

b. 0.5, 0.4, 0.5, 0.7, 0.4, 0.5

c. 25, 26, 23, 23, 24, 23

Antwort anzeigen

Antwort

a. D=2   V=0,583

b. D=0,5   V=0,01

c. D=24   V=1,33

Frage anzeigen

Frage

Berechne zu den folgenden Wertereihen den Durchschnittswert (D) sowie die Varianz (V)


a. 0, 0, 1, 2, 0, 3

b. 0.8, 0.7, 0.8, 0.9, 0.6, 0.4

c. 50, 53, 51, 52, 50, 50

Antwort anzeigen

Antwort

a. D=1  V=1,33

b. D=0,7   V=0,0266

c. D=51   V=1,33

Frage anzeigen

Frage

Berechne den Durchschnitt (D) und die Standardabweichung (S) der folgenden Zahlenreihen


a. 2, 3, 1, 3, 3, 1, 2, 1

b. 0.2, 0.3, 0.2, 0.1, 0.2

c. 20, 21, 18, 18, 23, 20

Antwort anzeigen

Antwort

a. D=2  S=0,866

b. D=0.2   S=0,063

c. D=20  S=1,73

Frage anzeigen

Frage

Berechne den Durchschnitt (D) und die Standardabweichung (S) der folgenden Zahlenreihen


a. 3, 5, 1, 2, 2, 5

b. 0.8, 0.7, 0.9, 0.9, 0.7

c. 50, 55, 53, 52, 40, 50

Antwort anzeigen

Antwort

a. D=3    S=1,58

b. D=0,8   S=0,089

c. D=50   S=4,8

Frage anzeigen

Frage

Berechne den Durchschnitt (D) und die Standardabweichung (S) der folgenden Zahlenreihen


a. 5, 6, 4, 8, 5, 8

b. 0.5, 0.6, 0.6, 0.5, 0.8

c. 55, 65, 65, 75, 60, 70

Antwort anzeigen

Antwort

a. D=6   S=1,53

b. D=0,6  S=0,11

c. D=65   S=6,45

Frage anzeigen

Frage

Berechne den Durchschnitt (D) und die Standardabweichung (S) der folgenden Zahlenreihen


a. 7, 12, 9, 12, 11, 9  

b. 0.4, 0.4, 0.5, 0.4, 0.3

c. 89, 95, 88, 87, 91, 90

Antwort anzeigen

Antwort

a. D=10   S=1,83

b. D=0,4   S=0,063

c. D=90   S= 2,58

Frage anzeigen

Frage

Berechne den Durchschnitt (D) und die Standardabweichung (S) der folgenden Zahlenreihen


a. 8, 9, 10, 6, 7, 8  

b. 0.1, 0, 0.2, 0.2, 0

c. 71, 72, 77, 77, 78, 75

Antwort anzeigen

Antwort

a. D=8   S=1,29

b. D=0,1   S=0,089

c. D=75   S=2,65

Frage anzeigen

Frage

Berechne zu den folgenden Wertereihen den Durchschnittswert (D) sowie die Varianz (V) 


a. 2; 1; 3; 5; 6; 7

b. 51; 58; 55; 59; 52

c. 14; 18; 15; 17; 19; 21; 22



Antwort anzeigen

Antwort

a. D = 4

    V = 4,67

b. D = 55

    V = 10

c. D = 18

    V = 4,43

Frage anzeigen

Frage

Berechne den Durchschnitt (D) und die Standardabweichung (S) der folgenden Zahlenreihen


a. 2, 3, 5, 2, 4, 2

b. 0,3; 0,4; 0,5; 0,5; 0,3

c. 28; 27, 29, 31, 30, 29

Antwort anzeigen

Antwort

a. D=3   S=1,154

b. D= 0,4   S=0,089

c. D=29   S=1,29

Frage anzeigen

Frage

Berechne den Durchschnitt (D) und die Standardabweichung (S) der folgenden Zahlenreihen


a. 7, 8, 6, 5, 9, 7

b. 0,7; 0,8; 0,7; 0,6; 0,7

c. 33; 35; 34; 36; 32; 34

Antwort anzeigen

Antwort

a. D=7   S=1,29

b. D=0,7   S=0,063

C: D=34   S=1,29

Frage anzeigen

Frage

Berechne den Durchschnitt (D) und die Standardabweichung (S) der folgenden Zahlenreihen


a. 6, 10, 3, 7, 4, 6

b. 0,01; 0,05; 0,04; 0,06; 0,04

c. 82, 84, 83, 85, 82, 88

Antwort anzeigen

Antwort

a. D=6   S=2,24

b. D=0,04   S=0,0167

c. D=84   S=2,08

Frage anzeigen

Frage

Berechne den Durchschnitt (D) und die Standardabweichung (S) der folgenden Zahlenreihen


a. 5, 6, 4, 6, 5, 4

b. 0,5; 0,3; 0,8; 0,7; 0,2

c. 66; 68; 65; 65; 67; 65

Antwort anzeigen

Antwort

a. D=5   S=0,816

b. D= 0,5   S=0,51

c. D=66   S=1,154

Frage anzeigen

Frage

Berechne zu den folgenden Wertereihen den Durchschnittswert (D) sowie die Varianz (V) 


a. 3; 5; 6; 2; 4; 4

b. 50; 56; 48; 47; 49

c. 10,0; 10,5; 10,2; 10,3; 10,2; 10,3

Antwort anzeigen

Antwort

a. D=4   V=1,67

b. D=50   V=10

c. D=10,25   V=0,0225

Frage anzeigen

Frage

Berechne zu den folgenden Wertereihen den Durchschnittswert (D) sowie die Varianz (V) 


a. 5, 4, 6, 5, 7, 3

b. 51, 55, 53, 56, 53, 50

c. 1,5; 1,8; 1,6; 1,6; 1,4; 1,7

Antwort anzeigen

Antwort

a. D=5   V=1,67

b. D=53   V=4,33

c. D=1,6   V=0,1

Frage anzeigen

Frage

Berechne zu den folgenden Wertereihen den Durchschnittswert (D) sowie die Varianz (V) 


a. 6, 5, 5, 8, 4, 8

b. 72, 73, 76, 77, 77

c. 2,5; 2,6; 2,8; 2,3; 2,3; 2,5

Antwort anzeigen

Antwort

a. D=6   V=2,33

b. D=75   V=4,4

d. D=2,5   V=0,03

Frage anzeigen

Frage

Berechne zu den folgenden Wertereihen den Durchschnittswert (D) sowie die Varianz (V) 


a. 7, 5, 5, 7, 6, 6

b. 65, 64, 66, 67, 63

c. 1,4; 1,35; 1,4; 1,35; 1,5

Antwort anzeigen

Antwort

a. D=6   V=0,67

b. D=65   V=2

c. D=1,4   V=0,003

Frage anzeigen

Frage

Berechne zu den folgenden Wertereihen den Durchschnittswert (D) sowie die Varianz (V)


a. 5, 6, 5, 4, 7, 3

b. 1,5; 1,6; 1,5; 1,4; 1,5; 1,5

c. 72, 75, 75, 76, 73, 73

Antwort anzeigen

Antwort

a. D= 5   V= 1,67

b. D= 1,5   V= 0,0033

c. D= 74   V= 2

Frage anzeigen

Frage

Berechne zu den folgenden Wertereihen den Durchschnittswert (D) sowie die Varianz (V)


a. 2, 3, 2, 2, 3, 0

b. 0,4; 0,6; 0,5; 0,8; 0,3; 0,4

c. 55, 56, 58, 53, 52, 56

Antwort anzeigen

Antwort

a. D=2   V= 1

b. D=0,5   V= 0,0267

c. D=55  V=4

Frage anzeigen

Frage

Berechne zu den folgenden Wertereihen den Durchschnittswert (D) sowie die Varianz (V)


a. 0; 0,5; 0,8; 1,3; 1,4; 2

b. 5, 6, 5, 8, 3, 3

c. 100, 103, 102, 105, 95,

Antwort anzeigen

Antwort

a. D=1   V= 0,2567

b. D=5   V=3

c. D=101   V=11,6

Frage anzeigen

Frage

Ein fairer Würfel wird geworfen. Berechne die Varianz, wenn der Würfel


  1. die Zahlen 1,2,3,4,5 und 6 enthält
  2. die Zahlen 2,4,8,16,32 und 64 enthält
Antwort anzeigen

Antwort

  1. 2,91666666
  2. 469
Frage anzeigen

Frage

In einer Urne sind 2 rote und 3 blaue Kugeln. Es wird mit zurücklegen gezogen. Sei X die Anzahl der gezogenen roten Kugeln. Berechne die Varianz von X, wenn

  1. 2 Mal gezogen wird.
  2. 3 Mal gezogen wird.
Antwort anzeigen

Antwort

  1. 0,48
  2. 0,72
Frage anzeigen

Frage

Ein Glücksrad hat einen roten Sektor und einen blauen Sektor. Der rote Sektor hat eine Größe von p (0<p<1), der blaue eine Größe von 1 -p. Das Rad wird einmal gedreht. Sei X eine Zufallsvariable mit X= 1, wenn das Rad rot zeigt, und 0, wenn es Blau zeigt.

  1. Berechne in Abhängigkeit von p die Varianz von X
  2. für welchen Wert von p wird die Varianz von X maximal?
  3.  Wie groß ist die Varianz in diesem Fall?
Antwort anzeigen

Antwort

  1. p-p²
  2.  p =0,5; 
  3. Varianz = 0,25
Frage anzeigen

Frage

Der Notenspiegel bei einer Klausur sieht wiefolgt aus: 4 Schüler haben eine 1, 7 Schüler eine 2, 6 Schüler eine 3, 5 Schüler eine 4 und 3 Schüler haben eine 5.


  1. Berechne die Varianz der Noten.
  2. Bei 3 Schülern, die die Klausur nachgeschrieben haben, haben 2 Schüler eine 4 und ein Schüler eine 5. Berechne die neue Varianz des Notenspiegels.
Antwort anzeigen

Antwort

  1.  Varianz = 1,5744
  2. Varianz =  1,64285
Frage anzeigen

Frage

Berechne zu den folgenden Wertereihen den Durchschnittswert (D) sowie die Varianz (V)


a. 5, 7, 7, 8, 8

b. 2,0; 2,5; 2,4; 2,0; 2,1; 2,2

c. 34; 33; 34; 35; 33; 35

Antwort anzeigen

Antwort

a. D=7 ; V=1,2

b. D=2,2 ; V=0,0367

c. D=34 ; V=0,67

Frage anzeigen

Frage

Berechne zu den folgenden Wertereihen den Durchschnittswert (D) sowie die Varianz (V)


a. 3, 5, 9, 5, 3

b. 1,5 ; 1,7; 1,4; 1,5; 1,3; 1,6

c. 41, 45, 46, 42, 42, 42

Antwort anzeigen

Antwort

a. D=5; V=4,8

b. D=1,5; V=0,0167

c. D=43; V=3,33

Frage anzeigen

Frage

Berechne zu den folgenden Wertereihen den Durchschnittswert (D) sowie die Varianz (V)


a. 5, 6, 7, 5, 7

b. 2,2; 1,7; 2,0; 2,2; 1,9; 2,0

c. 33, 35, 36, 34, 33, 33

Antwort anzeigen

Antwort

a, D=6 ; V=0,8

b. D=2,0 ; V=0,03

c. D=34 ; V=1,33

Frage anzeigen

Frage

Berechne den Durchschnitt (D) und die Standardabweichung (S) der folgenden Zahlenreihen


a. 3, 2, 5, 4, 3, 7

b. 0.5, 0.4, 0.5, 0.7, 0.4

c. 33, 35, 36, 36, 34, 36

Antwort anzeigen

Antwort

a. D=4 ; S=1,63

b. D=0,5 ; S=0,11

c. D=35 ; S=1,15

Frage anzeigen

Frage

Berechne den Durchschnitt (D) und die Standardabweichung (S) der folgenden Zahlenreihen


a. 5, 7, 6, 8, 4

b. 0.2, 0.3, 0.3, 0.1, 0.1, 0.2

c. 44, 38, 39, 39, 42, 38

Antwort anzeigen

Antwort

a. D=6 ; S=1,41

b. D=0,2 ; S=0,082

c. D=40 ; S=2,24

Frage anzeigen

Frage

Berechne den Durchschnitt (D) und die Standardabweichung (S) der folgenden Zahlenreihen


a. 6, 6, 8, 5, 5

b. 0.5, 1.5, 1.5, 1.0, 1.0 , 0.5

c. 55, 56, 52, 56, 55, 56

Antwort anzeigen

Antwort

a. D=6 ; S=1,095

b. D=1 ; S=0,41

c. D=55 ; S=1,41

Frage anzeigen

Frage

Berechne den Durchschnitt (D) und die Standardabweichung (S) der folgenden Zahlenreihen


a. 2, 8, 5, 7, 3

b. 0.7, 0.8, 0.9, 0.7, 0.7, 1

c. 85, 84, 89, 86, 88, 84

Antwort anzeigen

Antwort

a. D=5 : S=2,28

b. D=0,8 ; S=0,15

c. D=86  S=1,91

Frage anzeigen

Frage

Berechne den Durchschnitt (D) und die Standardabweichung (S) der folgenden Zahlenreihen


a. 9, 9, 3, 2, 2

b. 1.3, 1.2, 1.4, 1.5, 1.2, 1.2

c. 66, 68, 60, 66, 64, 66

Antwort anzeigen

Antwort

a. D=5 ; S=3,49

b. D=1,3 ; S=0,115

c. D=65 ; S=2,52

Frage anzeigen

Frage

Berechne den Durchschnitt (D) und die Standardabweichung (S) der folgenden Zahlenreihen


a. 9, 7, 3, 0, 1

b. 1.5, 1.6, 1.6, 1.3, 1.5, 1.5

c. 74, 76, 75, 72, 76, 77

Antwort anzeigen

Antwort

a. D=4 ; S=3,46

b. D=1,5 ; S=0,1

c. D=75 ; S=1,63

Frage anzeigen

Frage

Berechne den Durchschnitt (D) und die Standardabweichung (S) der folgenden Zahlenreihen


a. 5, 3, 6, 6, 5

b. 1.4, 1.8, 1.7, 1.5, 1.5, 1.7

c. 85, 88, 85, 86, 89, 89

Antwort anzeigen

Antwort

a. D=5 ; S=1,41

b. D=1.6 ; S=0,41

c.  D=87 ; S=1,73

Frage anzeigen

Frage

Berechne den Durchschnitt (D) und die Standardabweichung (S) der folgenden Zahlenreihen


a. 3, 6, 3, 5, 3

b. 3.5, 3,6, 3.2, 3.8, 3.4, 3.5

c. 95, 98, 90, 97, 93, 97

Antwort anzeigen

Antwort

a. D=4 ; S=1,26

b. D=3.5 ; S=0,18

c. D=95 ; S=2,77

Frage anzeigen

Frage

Berechne den Durchschnitt (D) und die Standardabweichung (S) der folgenden Zahlenreihen


a. 10, 15, 7, 7, 11

b. 2.3, 2.1, 2.4, 2.5, 2.2, 2.3

c. 67, 68, 63, 67, 64, 67

Antwort anzeigen

Antwort

a. D=10 ; S=2,97

b.  D=2,3 ; S=0,13

c.  D=66 ; S=1,83

Frage anzeigen

Frage

Berechne den Durchschnitt (D) und die Standardabweichung (S) der folgenden Zahlenreihen


a. 12, 7, 6, 9, 6

b. 1.8, 1.9, 2.2, 2.2, 2.1, 1.8

c. 72, 75, 73, 75, 74, 75

Antwort anzeigen

Antwort

a. D=8 ; S=2,28

b. D=2,0 ; S=0,17

c. D=74 ; S=1,15

Frage anzeigen
Mehr zum Thema Varianz
60%

der Nutzer schaffen das Varianz Quiz nicht! Kannst du es schaffen?

Quiz starten

Finde passende Lernmaterialien für deine Fächer

Alles was du für deinen Lernerfolg brauchst - in einer App!

Lernplan

Sei rechtzeitig vorbereitet für deine Prüfungen.

Quizzes

Teste dein Wissen mit spielerischen Quizzes.

Karteikarten

Erstelle und finde Karteikarten in Rekordzeit.

Notizen

Erstelle die schönsten Notizen schneller als je zuvor.

Lern-Sets

Hab all deine Lermaterialien an einem Ort.

Dokumente

Lade unzählige Dokumente hoch und habe sie immer dabei.

Lern Statistiken

Kenne deine Schwächen und Stärken.

Wöchentliche

Ziele Setze dir individuelle Ziele und sammle Punkte.

Smart Reminders

Nie wieder prokrastinieren mit unseren Lernerinnerungen.

Trophäen

Sammle Punkte und erreiche neue Levels beim Lernen.

Magic Marker

Lass dir Karteikarten automatisch erstellen.

Smartes Formatieren

Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.

Gerade angemeldet?

Ja
Nein, aber ich werde es gleich tun

Melde dich an für Notizen & Bearbeitung. 100% for free.