Login Anmelden

Select your language

Suggested languages for you:
StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
|
|
Summenregel Wahrscheinlichkeit

Erinnerst du dich noch an den Schäfer aus der 1. Pfadregel? Es ist mal wieder so weit. Die 50 Schafe haben dickes Fell und müssen wieder geschoren werden. Dieses Mal würde der Schäfer gerne abwechselnd seine 25 schwarzen und weißen Schafe scheren und überlegt sich, wie groß die Wahrscheinlichkeit ist, dass er das schafft. Um diese Wahrscheinlichkeit zu berechnen, benötigst…

Von Expert*innen geprüfte Inhalte
Kostenlose StudySmarter App mit über 20 Millionen Studierenden
Mockup Schule

Entdecke über 200 Millionen kostenlose Materialien in unserer App

Summenregel Wahrscheinlichkeit

Summenregel Wahrscheinlichkeit

Speicher die Erklärung jetzt ab und lies sie, wenn Du Zeit hast.

Speichern
Illustration

Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken

Jetzt kostenlos anmelden

Nie wieder prokastinieren mit unseren Lernerinnerungen.

Jetzt kostenlos anmelden
Illustration

Erinnerst du dich noch an den Schäfer aus der 1. Pfadregel? Es ist mal wieder so weit. Die 50 Schafe haben dickes Fell und müssen wieder geschoren werden. Dieses Mal würde der Schäfer gerne abwechselnd seine 25 schwarzen und weißen Schafe scheren und überlegt sich, wie groß die Wahrscheinlichkeit ist, dass er das schafft. Um diese Wahrscheinlichkeit zu berechnen, benötigst du die 2. Pfadregel, die Summe von Wahrscheinlichkeiten.

Summe von Wahrscheinlichkeiten – Erklärung

Möchte der Schäfer abwechselnd schwarze und weiße Schafe scheren, dann hat er mathematisch betrachtet 2 Pfade im Baumdiagramm zur Auswahl, je nachdem ob das erste Schaf schwarz oder weiß ist. Die zwei möglichen Pfade sind in Türkis eingefärbt.

Mehr zum "Baumdiagramm" findest du im entsprechenden Artikel.

Summenregel Wahrscheinlichkeit 2. Pfadregel Baumdiagramm StudySmarterAbbildung 1: Baumdiagramm zur Summenregel

Der Schäfer fängt also erst mit einem schwarzen Schaf an, oder mit einem weißen. Daher kannst du die Wahrscheinlichkeiten der Pfade ganz einfach addieren.

Warum das so ist, lässt sich logisch erklären:

Am Ende des Baumdiagramms hat der Schäfer 4 mögliche Ereignisse. Da die Summe aller Wahrscheinlichkeiten immer 1 ergeben muss, hat jedes Ereignis die Wahrscheinlichkeit 14einzutreten. Möchte der Schäfer die Schafe abwechselnd nach ihrer Fellfarbe scheren, kommen dafür 2 der 4 Pfade infrage.

2:4=12=14+14

Die 2. Pfadregel ist also die Summe von Wahrscheinlichkeiten.

2. Pfadregel (Summe von Wahrscheinlichkeiten): Bei einem mehrstufigen Zufallsexperiment musst du für die Wahrscheinlichkeit mehrerer Ereignisse die Wahrscheinlichkeiten der Pfade miteinander addieren.

Hier kannst du die Vereinigungsmenge ∪ anwenden, die bei der 1. Pfadregel schon kurz angesprochen wurde.

Die Vereinigungsmenge ∪ beschreibt die Menge von A und/oder B, sprich neben der gemeinsamen Menge von A und B kann auch nur A oder B eintreffen.

Die Schreibweise sieht dann wie folgt aus:

P(SWWS)=12·12+12·12=12

Das ist aber sehr unübersichtlich und verwirrend. Daher gibt es noch eine andere Schreibweise:

P({SW},{WS})=12·12+12·12=12

Die geschweiften Klammern geben die Ergebnismenge der Ereignisse an.

Die Ergebnismenge besteht aus allen möglichen Ereignissen eines Zufallsexperiments.

In diesem Fall ist es die Ergebnismenge von S und W oder W und S.

Vorher musst du die Pfade natürlich noch mithilfe der 1. Pfadregel berechnen.

Schaue zur Erinnerung gerne noch einmal im Artikel zur 1. Pfadregel rein.

1. Pfadregel (Produkt von Wahrscheinlichkeiten): Bei einem mehrstufigen Zufallsexperiment musst du für die Wahrscheinlichkeit eines Ereignisses die Wahrscheinlichkeiten entlang des zugehörigen Pfades miteinander multiplizieren.

Eselsbrücke, um dir zu merken, wann du welche Pfadregel benötigst:

1 Pfad=1. Pfadregel2 oder mehr Pfade=2. Pfadregel

Summenregel Wahrscheinlichkeit: ohne Zurücklegen

Wie bei allen mehrstufigen Zufallsexperimenten gibt es die Option, die Objekte – in diesem Fall die Schafe – zurückzulegen oder nicht. In der Erklärung hast du bereits den Fall mit Zurücklegen kennengelernt.

Lässt der Schäfer seine Schafe nach dem Scheren allerdings auf eine andere Weide, dann musst du die Wahrscheinlichkeiten anpassen. Dafür eignet sich ein Baumdiagramm gut, damit du nicht durcheinander kommst.

Summenregel Wahrscheinlichkeit 2. Pfadregel Baumdiagramm StudySmarterAbbildung 2: Baumdiagramm ohne Zurücklegen

Beim 1. Schaf ist die Herde noch komplett, also 50 Schafe, jeweils 25 davon weiß und schwarz, also eine 50 % Wahrscheinlichkeit, eine der beiden Farben zu bekommen. Ist dieses 1. Schaf dann auf der neuen Weide sind es nur noch 49 Schafe. Je nachdem, ob das 1. Schaf schwarz oder weiß war, musst du dann in der nächsten Stufe eines von den schwarzen oder weißen abziehen. Dieses Prinzip kannst du beliebig oft anwenden, bis keine Schafe mehr da sind.

Die Wahrscheinlichkeit, dass der Schäfer als 2. Schaf ein weißes erwischt, setzt sich zusammen aus den Wahrscheinlichkeiten P(S∩W) und P(W∩W).

Du rechnest also wie folgt:

P(SWWW)=12·2549+12·2449=12

Beachte, dass die Anzahl der weißen und schwarzen Schafe und auch die gesamte Herde nach jeder Runde kleiner wird!

Summenregel Wahrscheinlichkeit: Aufgaben

Na, wie viele Schafe hast du schon gezählt? Hier kannst du überprüfen, ob du alles verstanden hast.

Aufgabe 1

Wie wahrscheinlich ist es, dass der Schäfer zwei Schafe derselben Farbe hintereinander schert, wenn er sie danach zurück zur Herde lässt?

Lösung

Wenn du dir noch unsicher bist, kannst du dir ein Baumdiagramm skizzieren. In diesem Fall gibt es 2 mögliche Pfade. Entweder 2 schwarze oder 2 weiße Schafe.

Summenregel Wahrscheinlichkeit Aufgaben 2. Pfadregel Baumdiagramm StudySmarterAbbildung 3: Baumdiagramm zu Aufgabe 1

In deiner Rechnung solltest du zuerst die Produktregel anwenden, um die Wahrscheinlichkeiten der einzelnen Pfade auszurechnen und sie danach mit der Summenregel addieren.

P({SS}, {WW})=12·12+12·12=12

Aufgabe 2

Berechne Aufgabe 1 für den Fall, dass er die Schafe danach auf eine andere Weide lässt.

Lösung

Hier solltest du auf jeden Fall ein Baumdiagramm zu Hilfe nehmen.

Summenregel Wahrscheinlichkeit 2. Pfadregel Baumdiagramm Aufgaben StudySmarterAbbildung 4: Baumdiagramm zu Aufgabe

Pass hier auf, dass du mit den Zahlen nicht durcheinander kommst. Zur Erinnerung: nach dem 1. Schaf sind nur noch 49 Schafe auf der Weide.

Den Rest kannst du berechnen, wie in Aufgabe 1:

P({SS}, {WW})=12·2449+12·2449=2449

Aufgabe 3

Der Schäfer behauptet, es sei wahrscheinlicher, dass er zwei Schafe unterschiedlicher Farbe hintereinander schert, als 2 mit derselben Farbe, wenn er die Schafe danach auf eine andere Weide lässt. Hat er recht?

Lösung

Um herauszufinden, ob er recht hat, musst du die Wahrscheinlichkeiten beider Ereignisse berechnen. Kannst du das vielleicht schon ohne ein Baumdiagramm? Wenn nicht, nimm dir das aus Aufgabe 2 zu Hilfe.

P({SS}, {WW})=12·2449+12·2449=2449P({SW}, {SW})=12·2549+12·2549=2549

Antwort: Der Schäfer hat recht.

Summenregel Wahrscheinlichkeit - Das Wichtigste

  • Möchtest du wissen, mit welcher Wahrscheinlichkeit ein bestimmtes Ereignis oder ein anderes eintritt, wendest du die 2. Pfadregel an. Sie besagt, dass die Wahrscheinlichkeiten zweier voneinander unabhängiger Pfade miteinander addiert werden können.
  • Um ein Ereignis anzugeben, kannst du entweder die Vereinigungsmenge ∪ oder die Ergebnismenge {} verwenden.
  • Wie auch bei der 1. Pfadregel musst du aufpassen, ob es sich um ein Zufallsexperiment mit oder ohne Zurücklegen handelt. Werden die Objekte nicht zurückgelegt, solltest du dir ein Baumdiagramm zu Hilfe nehmen, damit du nicht durcheinander kommst, weil du die Wahrscheinlichkeiten für jeden Durchgang neu berechnen musst.

Häufig gestellte Fragen zum Thema Summenregel Wahrscheinlichkeit

Bei der Summenregel addierst du die Wahrscheinlichkeiten zweier voneinander unabhängigen Pfade miteinander. Gegebenenfalls musst du die Pfade vorher mit der Produktregel berechnen.

Dafür gibt es eine hilfreiche Eselsbrücke:

1 Pfad = 1. Pfadregel (Produktregel)

2 (oder mehr) Pfade = 2. Pfadregel (Summenregel)

Die Additionsregel benutzt du dann, wenn du zwei Ereignisse mit einem oder verknüpfen kannst.

Im Baumdiagramm kannst du mit der Summenregel die Wahrscheinlichkeiten von voneinander unabhängigen, also parallelen Pfaden miteinander addieren.

Finales Summenregel Wahrscheinlichkeit Quiz

Summenregel Wahrscheinlichkeit Quiz - Teste dein Wissen

Frage

Was musst du mit den Wahrscheinlichkeiten zweier oder mehr Pfade im Baumdiagramm machen, um herauszufinden, mit welcher Wahrscheinlichkeit mindestens einer davon eintritt?

Antwort anzeigen

Antwort

addieren

Frage anzeigen

Frage

Was musst du beachten, wenn du zwei Pfade miteinander addierst?

Antwort anzeigen

Antwort

Du musst die Pfade gegebenenfalls vorher noch mit der Produktregel berechnen.

Frage anzeigen

Frage

Was ist der Unterschied zwischen einem mehrstufigen Zufallsexperiment mit und ohne Zurücklegen?

Antwort anzeigen

Antwort

Beim mehrstufigen Zufallsexperiment ohne Zurücklegen musst du die einfachen Wahrscheinlichkeiten nach jeden Durchgang neu berechnen. Werden die Objekte zurückgelegt, so ändern sie sich nicht.

Frage anzeigen

Frage

Warum wird ein Baumdiagramm zum Lösen von Rechnungen in der Stochastik empfohlen?

Antwort anzeigen

Antwort

Ein Baumdiagramm verschafft dir Überblick über die einzelnen Wahrscheinlichkeiten, du kannst fehlende noch ergänzen und tust dich beim Ausrechnen der Pfade leichter.

Frage anzeigen

Frage

Wie wird die 2. Pfadregel noch genannt? Warum?

Antwort anzeigen

Antwort

Sie nennt sich auch Summenregel oder Additionssatz, weil die Wahrscheinlichkeiten der Pfade addiert werden.

Frage anzeigen

Frage

Welche Pfadregel gehört zu dem Wort und und welche zum Wort oder?

Antwort anzeigen

Antwort

Wenn du und sagen kannst, dann nimmst du die 1. Pfadregel, also die Produktregel, und wenn du oder sagen kannst, dann brauchst du die Summenregel.

Frage anzeigen

Frage

Wie kannst du dir merken, wann du welche Pfadregel anwendest?

Antwort anzeigen

Antwort

1 Pfad = 1. Pfadregel

2 oder mehr Pfade = 2. Pfadregel

Frage anzeigen

Frage

Anna fährt für 3 Tage in einen Kurzurlaub. Die Regenwahrscheinlichkeit beträgt am Freitag 20%, am Samstag 10% und am Sonntag 70%. Wie groß ist die Wahrscheinlichkeit, dass sie entweder am Freitag und Sonntag oder nur am Samstag schlechtes Wetter hat?

Antwort anzeigen

Antwort

Die Wahrscheinlichkeit beträgt 15%.

Frage anzeigen

Mehr zum Thema Summenregel Wahrscheinlichkeit
60%

der Nutzer schaffen das Summenregel Wahrscheinlichkeit Quiz nicht! Kannst du es schaffen?

Quiz starten

Wie möchtest du den Inhalt lernen?

Karteikarten erstellen
Inhalte meiner Freund:innen lernen
Ein Quiz machen

Wie möchtest du den Inhalt lernen?

Karteikarten erstellen
Inhalte meiner Freund:innen lernen
Ein Quiz machen

Kostenloser mathe Spickzettel

Alles was du zu . wissen musst. Perfekt zusammengefasst, sodass du es dir leicht merken kannst!

Jetzt anmelden

Finde passende Lernmaterialien für deine Fächer

Alles was du für deinen Lernerfolg brauchst - in einer App!

Lernplan

Sei rechtzeitig vorbereitet für deine Prüfungen.

Quizzes

Teste dein Wissen mit spielerischen Quizzes.

Karteikarten

Erstelle und finde Karteikarten in Rekordzeit.

Notizen

Erstelle die schönsten Notizen schneller als je zuvor.

Lern-Sets

Hab all deine Lermaterialien an einem Ort.

Dokumente

Lade unzählige Dokumente hoch und habe sie immer dabei.

Lern Statistiken

Kenne deine Schwächen und Stärken.

Wöchentliche

Ziele Setze dir individuelle Ziele und sammle Punkte.

Smart Reminders

Nie wieder prokrastinieren mit unseren Lernerinnerungen.

Trophäen

Sammle Punkte und erreiche neue Levels beim Lernen.

Magic Marker

Lass dir Karteikarten automatisch erstellen.

Smartes Formatieren

Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.

Melde dich an für Notizen & Bearbeitung. 100% for free.

Fang an mit StudySmarter zu lernen, die einzige Lernapp, die du brauchst.

Jetzt kostenlos anmelden
Illustration