Login Anmelden

Select your language

Suggested languages for you:
StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
|
|

Satz von Bayes

Satz von Bayes

Vielleicht hast Du schon mal etwas von der Bayes Regel gehört, auch Satz von Bayes genannt. Der Satz von Bayes ist ein wichtiger Satz in der Wahrscheinlichkeitsrechnung. Er hilft Dir dabei, den Zusammenhang bedingter Wahrscheinlichkeiten zu erkennen und zu berechnen. Hier wird Dir der Satz von Bayes einfach erklärt! Du erfährst etwas über die Satz von Bayes Formel und ihre Herleitung und kannst Dir Beispiele ansehen.

Satz von Bayes Grundlagen

Beim Satz von Bayes dreht sich alles um bedingte Wahrscheinlichkeiten. Deshalb solltest Du in folgenden Themen fit sein:

  • Zufallsexperiment

  • Ereignis

  • Bedingte Wahrscheinlichkeit

Satz von Bayes einfach erklärt

Der Satz von Bayes stellt eine direkte Verbindung zwischen einer bedingten Wahrscheinlichkeit zweier Ereignisse und ihrer Umkehrung her.

Satz von Bayes Definition & Formel (Bayes Regel)

Hast Du die bedingte Wahrscheinlichkeit zweier Ereignisse \(A\) und \(B\) gegeben, beispielsweise \(P_A(B)\), beschreibt der Satz von Bayes den Zusammenhang zwischen \(P_A(B)\) und der Umkehrung \(P_B(A)\).

Der Satz von Bayes lautet \[P_B(A)=\frac{P(A)\cdot P_A(B)}{P(B)}.\]

\(P(A)\) und \(P(B)\) sind dabei nicht an eine Bedingung geknüpft und nennen sich Anfangswahrscheinlichkeiten. Sie beschreiben die Wahrscheinlichkeit, dass das Ereignis \(A\) bzw. das Ereignis \(B\) eintritt.

Die Formel des Satzes von Bayes kann auch umgedreht werden, indem die Ereignisse \(A\) und \(B\) vertauscht werden. So kannst Du die Wahrscheinlichkeit \(P_A(B)\) berechnen:

\[P_A(B)=\frac{P(B)\cdot P_B(A)}{P(A)}.\]

Satz von Bayes am Baumdiagramm

Da es im Satz von Bayes um bedingte Wahrscheinlichkeiten geht, lässt er sich recht gut anhand eines Baumdiagramms verdeutlichen.

Satz von Bayes Baumdiagramm StudySmarterAbbildung 1: Satz von Bayes – Bedingte Wahrscheinlichkeiten am Baumdiagramm

Satz von Bayes Beispiele

Um das Rechnen mit dem Satz von Bayes zu verdeutlichen, findest Du hier ein konkretes Beispiel der Anwendung des Satzes von Bayes.

In einer Klasse befinden sich 30 Kinder. Alle Lernenden werden vor einer Klausur von einer unabhängigen Gruppe gefragt, ob sie für die Klausur gelernt haben. Zur Auswahl stehen nur die Antworten „Ja“ und „Nein“.

Nachdem die Klausur geschrieben wurde und die Noten feststehen, werden die Noten den Aussagen der Kinder zugeordnet. Es zeigt sich, dass von 30 Kindern 9 nicht gelernt haben. Insgesamt haben zehn Kinder nicht bestanden. Die Wahrscheinlichkeit, dass ein Kind nicht gelernt hat, wenn es die Klausur nicht bestanden hat, beträgt \(75\,\%\).

Wie wahrscheinlich ist es, dass ein zufällig ausgewähltes Kind nicht bestanden hat, wenn bekannt ist, dass es nicht gelernt hat?

Notiere Dir zunächst die möglichen Ereignisse und alle gegebenen Wahrscheinlichkeiten:

  • Ereignis \(A\): nicht gelernt, Ereignis \(B\): nicht bestanden
  • \(P(A)=\frac{9}{30}=\text{0,3}\)
  • \(P(B)=\frac{10}{30}=\frac{1}{3}\approx \text{0,33}\)
  • \(P_B(A)=\text{0,75}\)

Da Du nun \(P_B(A)\) gegeben hast und \(P_A(B)\) suchst, muss die Formel entsprechend angepasst werden. Du darfst hier einfach jeweils \(A\) und \(B\) vertauschen und erhältst \[P_A(B)=\frac{P(B)\cdot P_B(A)}{P(A)}.\]

Jetzt setzt Du alle bekannten Wahrscheinlichkeiten in die Formel ein:

\begin{align}P_A(B)&=\frac{\frac{1}{3}\cdot \text{0,75}}{\text{0,3}} \\[0.1cm] &=\frac{5}{6}\\[0.2cm]&\approx\text{0,83}.\end{align}

Wenn Du aus allen Kindern, die nicht gelernt haben, zufällig eines auswählst, beträgt die Wahrscheinlichkeit, dass es nicht bestanden hat, \(\text{83,3}\%\).

Totale Wahrscheinlichkeit

Es kann vorkommen, dass Dir in manchen Aufgaben Angaben zu den Anfangswahrscheinlichkeiten, auch totale Wahrscheinlichkeiten genannt, fehlen. Doch keine Sorge! Diese kannst Du ebenfalls berechnen.

Um die Gesamtwahrscheinlichkeit eines Ereignisses \(A\) zu berechnen, wenn nur bedingte oder gemeinsame Wahrscheinlichkeiten gegeben sind, benötigst Du den Satz der totalen Wahrscheinlichkeit:

\begin{align}P(A)&=P(A \cap B)+P(A \cap \overline{B})\\ &=P(B) \cdot P_B(A)+P(\overline{B}) \cdot P_{\overline{B}}(A).\end{align}

Mehr über totale Wahrscheinlichkeiten und deren Berechnung erfährst Du in der Erklärung totale Wahrscheinlichkeit.

Satz von Bayes Herleitung

Doch wieso gilt der Satz von Bayes überhaupt so und wo kommt er her?

Der Satz lässt sich tatsächlich aus der Formel für die bedingten Wahrscheinlichkeiten herleiten. Diese lautet ja \[P_B(A)=\frac{P(A\cap B)}{P(B)}.\]

Du kannst sie auch so umstellen, dass sie nicht die Wahrscheinlichkeit von \(A\) unter der Bedingung von \(B\) beschreibt, sondern die Wahrscheinlichkeit von \(B\) unter der Bedingung von \(A\). Dafür darfst Du ebenfalls wieder \(A\) und \(B\) vertauschen und erhältst \[P_A(B)=\frac{P(B\cap A)}{P(A)}.\]

Da die Menge \(A\cap B\) dieselben Elemente beinhaltet, wie die Menge \(B\cap A\), sind diese Mengen auch gleich wahrscheinlich. Es gilt demnach:

\[P(A\cap B)=P(B\cap A)\]

Löst Du nun beide obigen Formeln der bedingten Wahrscheinlichkeiten nach \(P(A\cap B)\) bzw. \(P(B\cap A)\) auf, kannst Du diese gleichsetzen.

\begin{align} P_B(A)&=\frac{P(A\cap B)}{P(B)} \\\\ \Leftrightarrow \quad P(A\cap B)&= P_B(A) \cdot P(B).\end{align}

und

\begin{align} P_A(B)&=\frac{P(B\cap A)}{P(A)} \\\\ \Leftrightarrow \quad P(B\cap A)&= P_A(B) \cdot P(A)\end{align}

Durch Gleichsetzen erhältst Du

\begin{align} P_B(A) \cdot P(B)&= P_A(B) \cdot P(A) \\\\ \Leftrightarrow \quad P_B(A) &= \frac{P_A(B) \cdot P(A)}{P(B)}\end{align}

Damit erhältst Du genau die Formel, die Du im Satz von Bayes findest.

Satz von Bayes Aufgaben

In den folgenden Aufgaben kannst Du üben, den Satz von Bayes anzuwenden.

Aufgabe 1

Eine Person fährt an \(75\,\%\) ihrer Arbeitstage mit dem Zug zur Arbeit. In \(80\,\%\) dieser Fälle erreicht sie pünktlich ihren Arbeitsplatz, im Durchschnitt kommt sie aber nur an \(70\,\%\) der gesamten Arbeitstage pünktlich an.

Wie hoch ist die Wahrscheinlichkeit, dass die Person den Zug genommen hat, unter der Bedingung, dass die pünktlich ankommt?

Lösung

Hier notierst Du zuerst wieder alle Ereignisse und gegebenen Wahrscheinlichkeiten:

  • Ereignis \(A\): Person benutzt den Zug, Ereignis \(B\): Person erscheint pünktlich
  • \(P(A)=\text{0,75}\)
  • \(P_A(B)=\text{0,8}\)
  • \(P(B)=\text{0,7}\)

Gesucht ist hier \(P_B(A)\). Hier kannst Du die gegebenen Wahrscheinlichkeiten also direkt in die Formel des Satzes von Bayes einsetzen und erhältst:

\[P_B(A)=\frac{\text{0,75}\cdot\text{0,8}}{\text{0,7}}\approx\text{0,8571}\]

Die Wahrscheinlichkeit, dass die Person den Zug genommen hat, unter der Bedingung, dass die pünktlich ankommt, beträgt also ca. \(\text{85,71}\,\%\).

Aufgabe 2

Stell Dir vor, Du gehst zum Arzt und wirst auf eine Krankheit getestet. Von zehn Leuten erkranken durchschnittlich zwei an der Krankheit. Bei Personen, die tatsächlich krank sind, zeigt der Test mit einer Wahrscheinlichkeit von \(99\,\%\) ein positives Ergebnis. Allerdings zeigt er in \(2\,\%\) der Fälle ein falsch positives Ergebnis an.

Wie wahrscheinlich ist es, dass Du wirklich krank bist, unter der Bedingung, dass der Test positiv ausfällt?

Lösung

Zuerst notierst Du alle Ereignisse und gegebenen Wahrscheinlichkeiten:

  • Ereignis \(A\): Du bist krank, Ereignis \(B\): Der Test ist positiv
  • \(P(A)=\frac{2}{10}\approx\text{0,2}\)
  • \(P_A(B)=\text{0,99}\)
  • \(P_{\overline{A}}(B)=\text{0,02}\)

Gesucht ist hier \(P_B(A)\).

Für die Berechnung fehlt noch die totale Wahrscheinlichkeit \(P(B)\), also die Wahrscheinlichkeit dafür, dass der Test positiv ausfällt. Diese kannst Du mithilfe der totalen Wahrscheinlichkeit berechnen:

\begin{align}P(B)&=P(B \cap A)+P(B \cap \overline{A})\\\\ &=P(A) \cdot P_A(B)+P(\overline{A}) \cdot P_{\overline{A}}(B).\end{align}

Dafür fehlt Dir noch die Wahrscheinlichkeit \(P(\overline{A})\). Diese ist:\[P(\overline{A})=1-P(A)=1-\text{0,2}=\text{0,8}\]

Du setzt dann also die gegebenen Wahrscheinlichkeiten in die Formel ein und erhältst

\[P(B)=\text{0,2} \cdot \text{0,99}+\text{0,8} \cdot \text{0,02}= \text{0,214}\]

Jetzt kannst Du alle bekannten Werte in den Satz von Bayes einsetzen:

\begin{align}P_B(A)&=\frac{P(A)\cdot P_A(B)}{P(B)}\\\\P_B(A)&=\frac{\text{0,2}\cdot \text{0,99}}{\text{0,214}} \approx \text{0,9252}\end{align}

Wenn der Test positiv ausfällt, bist Du also mit einer Wahrscheinlichkeit von \(\text{92,52}\,\%\) krank.

Aufgabe 3

Eine Handballmannschaft hat bei ihren Spielen eine Siegeschance von \(65\\%\), falls der Torhüter in guter Form ist. Wenn ihr Torhüter allerdings nicht in guter Form ist, dann liegt ihre Siegeschance nur bei \(35\,\%\). Bei \(75\,\%\) aller Spiele seiner Mannschaft ist der Torhüter in guter Form.

Wie hoch ist die Wahrscheinlichkeit, dass der Torhüter in guter Form ist, obwohl das Spiel verloren wird?

Lösung

Auch hier notierst Du wieder alle Ereignisse und gegebenen Wahrscheinlichkeiten:

  • Ereignis \(A\): Mannschaft gewinnt das Spiel, Ereignis \(B\): Torhüter ist in guter Form
  • \(P(B)=\text{0,75}\)
  • \(P_B(A)=\text{0,65}\)
  • \(P_{\overline{B}}(A)=\text{0,35}\)

Gesucht ist hier \(P_{\overline{A}}(B)\). Der Satz von Bayes wäre hier also wie folgt

\[P_{\overline{A}}(B)=\frac{P(B)\cdot P_{B}(\overline{A})}{P(\overline{A})}.\]

Hier müssen also noch \(P_{B}(\overline{A})\) und \(P(\overline{A})\) berechnet werden. Dabei können die Gegenereignisse und der Satz der totalen Wahrscheinlichkeit genutzt werden:

\begin{align}P_{B}(\overline{A})&=1-P_{B}(A)\\&=1-\text{0,65}\\ &=\text{0,35}\end{align}

und

\begin{align}P(\overline{A})&=1-(P(B) \cdot P_B(A)+P(\overline{B}) \cdot P_{\overline{B}}(A))\\&=1-\text{0,75} \cdot \text{0,65}+\text{0,25}\cdot \text{0,35}\\ &=\text{0,575}. \end{align}

Jetzt sind die gesuchten Wahrscheinlichkeiten bekannt und Du kannst sie in den Satz von Bayes einsetzen:

\begin{align}P_{\overline{A}}(B)&=\frac{\text{0,75}\cdot \text{0,35}}{\text{0,575}}\approx\text{0,4565}\end{align}

Die Wahrscheinlichkeit, dass der Torhüter in guter Form ist, obwohl das Spiel verloren wird, liegt also bei ca. \(\text{45,65}\,\%\).

Satz von Bayes – Das Wichtigste

  • Der Satz von Bayes lautet \[P_B(A)=\frac{P(A)\cdot P_A(B)}{P(B)}.\]
  • \(\overline{A}\) ist das Gegenereignis von \(A\) und \(\overline{B}\) das Gegenereignis von \(B\). Dabei gilt immer \(P(A)+P(\overline{A})=1\) sowie \(P(B)+P(\overline{B})=1\).
  • Um die Gesamtwahrscheinlichkeit eines Ereignisses \(A\) zu berechnen, wenn nur bedingte oder gemeinsame Wahrscheinlichkeiten gegeben sind, benötigst Du den Satz der totalen Wahrscheinlichkeit:

    \begin{align}P(A)&=P(A \cap B)+P(A \cap \overline{B})\\ &=P(B) \cdot P_B(A)+P(\overline{B}) \cdot P_{\overline{B}}(A).\end{align}

  • Der Satz von Bayes kann aus der Formel für bedingte Wahrscheinlichkeiten hergeleitet werden.


Nachweise

  1. Settle (2014). Das Bayes' sches Theorem. Totale und bedingte Wahrscheinlichkeit. GRIN Verlag.
  2. Tschirk (2014). Statistik: Klassisch oder Bayes Zwei Wege im Vergleich. Springer Berlin Heidelberg.

Häufig gestellte Fragen zum Thema Satz von Bayes

Der Satz von Bayes spielt eine große Rolle in der Wahrscheinlichkeitsrechnung, insbesondere bei der Berechnung bedingter Wahrscheinlichkeiten. Er ist nach dem englischen Mathematiker Thomas Bayes benannt.

Der Satz von Bayes beschreibt eine direkte Verbindung zwischen einer bedingten Wahrscheinlichkeit zweier Ereignisse und ihrer Umkehrung. Wenn Du also die Wahrscheinlichkeit für ein Ereignis A unter der Bedingung eines weiteren Ereignisses B gegeben hast, kannst Du mit dem Satz von Bayes die Wahrscheinlichkeit von Ereignis B unter der Bedingung A berechnen.

Wenn A und B zwei Ereignisse sind und die Wahrscheinlichkeit P(A|B) gegeben ist, kannst Du P(B|A) berechnen. Die Formel von Bayes dafür lautet:


P(B|A) = ( P(B) x P (A|B) ) : P(A).

Hast Du die Wahrscheinlichkeit für ein Ereignis A unter der Bedingung eines weiteren Ereignisses B (also P(A|B)) gegeben, kannst Du mit dem Satz von Bayes die Wahrscheinlichkeit von Ereignis B unter der Bedingung A (also P(B|A))berechnen. Der Satz von Bayes lautet 


P(B|A) = ( P(B) x P (A|B) ) : P(A).

Finales Satz von Bayes Quiz

Frage

Gegeben sind folgende Ereignisse:


Ereignis \(A\): Du bist krank.

Ereignis \(B\): Der Test auf die Krankheit ist positiv.


Beschreibe, wie die Wahrscheinlichkeit, dass Du krank bist, unter der Bedingung, dass der Test positiv ist, mathematisch ausgedrückt wird.

Antwort anzeigen

Antwort

Der mathematische Ausdruck dafür wäre \(P_B(A)\) oder \(P(A|B)\).

Frage anzeigen

Frage

Bewerte folgende Aussage:


Mit dem Satz von Bayes werden totale Wahrscheinlichkeiten berechnet.

Antwort anzeigen

Antwort

Die Aussage ist falsch. Mit dem Satz von Bayes werden bedingte Wahrscheinlichkeiten berechnet.

Frage anzeigen

Frage

Nenne die Bezeinchung der Wahrscheinlichkeit, dass zwei Ereignisse \(A\) und \(B\) beide auftreten.

Antwort anzeigen

Antwort

\(P(A\cap B)\)

Frage anzeigen

Frage

Beschreibe, wie die Wahrscheinlichkeit des Gegenereignisses von \(A\) berechnet wird.

Antwort anzeigen

Antwort

Die Wahrscheinlichkeit des Gegenereignisses von \(A\) berechnest Du, indem Du \(1-P(A)\) rechnest.

Frage anzeigen

Frage

Beschreibe, was der Satz von Bayes aussagt.

Antwort anzeigen

Antwort

Hast Du die bedingte Wahrscheinlichkeit zweier Ergeignisse \(A\) und \(B\) gegeben, beispielsweise \(P_A(B)\), beschreibt der Satz von Bayes den Zusammenhang zwischen \(P_A(B)\) und der Umkehrung \(P_B(A)\). Er lautet:

\[P_B(A)=\frac{P(A)\cdot P_A(B)}{P(B)}\]

Frage anzeigen

Frage

Bewerte folgende Aussage: 


Für den Satz von Bayes sind totale Wahrscheinlichkeiten nicht wichtig.

Antwort anzeigen

Antwort

Die Aussage ist falsch. Um den Satz von Bayes anwenden zu können, müssen die totalen Wahrscheinlichkeiten der einzelnen Ereignisse bekannt sein, da Du sie in den Satz einsetzen musst:

\[P_B(A)=\frac{P(A)\cdot P_A(B)}{P(B)}\]

Frage anzeigen

Frage

Entscheide, welche der folgenden Bezeichnungen die Situation beschreiben:


In einer Urne befinden sich 3 blaue Kugeln und 4 grüne Kugeln. Insgesamt sind 5 der Kugeln aus Holz und zwei aus Glas. Du ziehst eine Kugel aus der Urne.


Ereignis \(A\): Die Kugel ist blau.

Ereignis \(B\): Die Kugel ist aus Holz.


Gesucht ist die Bezeichnung für die Wahrscheinlichkeit, dass die gezogene Kugel blau ist, wenn sie nicht aus Holz ist.

Antwort anzeigen

Antwort

\(P_A(B)\)

Frage anzeigen

Frage

Entscheide, welche der folgenden Aussagen wahr ist.

Antwort anzeigen

Antwort

Der Satz lässt sich aus der Formel für die bedingten Wahrscheinlichkeiten herleiten.

Frage anzeigen

Frage

Gegeben sind die Ereignisse \(A\) und \(B\) und die Wahrscheinlichkeiten \(P(A)=\text{0,65}\), \(P(\overline{B})=\text{0,3}\) und \(P_B(A)=\text{0,8}\). 


Berechne \(P_A(B)\).

Antwort anzeigen

Antwort

Um den Satz von Bayes anwenden zu können, fehlt Dir die totale Wahrscheinlichkeit von \(B\). Diese kannst Du berechnen, indem Du

\[P(B)=1-P((\overline{B}))=\text{0,7}\]

rechnest. Dann setzt Du in den Satz von Bayes ein: 

\begin{align}P_A(B)&=\frac{P(B)\cdot P_B(A)}{P(A)}\\
P_A(B)&=\frac{\text{0,7}\cdot \text{0,8}}{\text{0,65}}\approx\text{0,8615}\end{align}

\(P_A(B)\) beträgt demnach \(\text{86,15}\,\%\).

Frage anzeigen

Frage

Bewerte folgende Aussage:


Für zwei Ereignisse \(A\) und \(B\) gilt \[P(A\cap B)=P(B\cap A).\]

Antwort anzeigen

Antwort

Die Aussage ist wahr.

Frage anzeigen

Frage

Gegeben sind die Ereignisse \(A\) und \(B\) und die Wahrscheinlichkeiten \(P(A)=\text{0,53}\), \(P({B})=\text{0,72}\) und \(P_A(B)=\text{0,81}\). 


Berechne \(P_B(A)\).

Antwort anzeigen

Antwort

Du setzt die gegebenen Wahrscheinlichkeiten in den Satz von Bayes ein: 

\begin{align}P_B(A)&=\frac{P(A)\cdot P_A(B)}{P(B)}\\\\
P_B(A)&=\frac{\text{0,53}\cdot \text{0,81}}{\text{0,72}} \approx \text{0,5963}\end{align}

 \(P_B(A)\) beträgt demnach \(\text{59,63}\,\%\).

Frage anzeigen

Frage

Beschreibe, was die bedingte Wahrscheinlichkeit ist.

Antwort anzeigen

Antwort

Die bedingte Wahrscheinlichkeit ist die Wahrscheinlichkeit, dass ein Ereignis eintritt, nachdem ein anderes Ereignis bereits eingetreten ist.

Frage anzeigen

Frage

Beschreibe den Unterschied zwischen \(P_B(A)\) und \(P( A\cap B)\).

Antwort anzeigen

Antwort

\(P_B(A)\) beschreibt die Wahrscheinlichkeit, dass Ereignis \(A\) eintritt, unter der Bedingung, dass bereits Ereignis \(B\) eingetreten ist.

\(P( A\cap B)\) beschreibt die Wahrscheinlichkeit, dass sowohl Ereignis \(A\) als auch Ereignis \(B\) eintreten.

Frage anzeigen

Frage

Nenne die Formel zur Berechnung der bedingten Wahrscheinlichkeit \(P_B(A).\)

Antwort anzeigen

Antwort

\[P_B(A)=\frac{P(A\cap B)}{P(B)}\]

Frage anzeigen

Frage

Eine Person isst ihr Frühstück an \(75\,\%\) der Tage sehr früh. In \(90\,\%\) dieser Fälle bekommt sie mittags wieder Hunger, im Durchschnitt bekommt sie aber nur an \(80\,\%\) der gesamten Tage mittags wieder Hunger.


Wie hoch ist die Wahrscheinlichkeit, dass die Person früh gefrühstückt hat, unter der Bedingung, dass sie mittags wieder Hunger bekommt?

Antwort anzeigen

Antwort

Zuerst notierst Du alle Ereignisse und gegebenen Wahrscheinlichkeiten:


Ereignis \(A\): Person frühstückt früh, Ereignis \(B\): Person bekommt mittags Hunger

  • \(P(A)=\text{0,75}\)
  • \(P_A(B)=\text{0,9}\)
  • \(P(B)=\text{0,80}\)


Gesucht ist hier \(P_B(A)\). Hier kannst Du die gegebenen Wahrscheinlichkeiten also direkt in die Formel des Satzes von Bayes einsetzen und erhältst:

\[P_B(A)=\frac{\text{0,75}\cdot \text{0,9}}{\text{0,8}} \approx 0,8438\]

Die Wahrscheinlichkeit, dass die Person früh gefrühstückt hat, unter der Bedingung, dass sie mittags Hunger bekommt, liegt bei ca. \(84,38\,\%\).

Frage anzeigen

Mehr zum Thema Satz von Bayes
60%

der Nutzer schaffen das Satz von Bayes Quiz nicht! Kannst du es schaffen?

Quiz starten

Finde passende Lernmaterialien für deine Fächer

Alles was du für deinen Lernerfolg brauchst - in einer App!

Lernplan

Sei rechtzeitig vorbereitet für deine Prüfungen.

Quizzes

Teste dein Wissen mit spielerischen Quizzes.

Karteikarten

Erstelle und finde Karteikarten in Rekordzeit.

Notizen

Erstelle die schönsten Notizen schneller als je zuvor.

Lern-Sets

Hab all deine Lermaterialien an einem Ort.

Dokumente

Lade unzählige Dokumente hoch und habe sie immer dabei.

Lern Statistiken

Kenne deine Schwächen und Stärken.

Wöchentliche

Ziele Setze dir individuelle Ziele und sammle Punkte.

Smart Reminders

Nie wieder prokrastinieren mit unseren Lernerinnerungen.

Trophäen

Sammle Punkte und erreiche neue Levels beim Lernen.

Magic Marker

Lass dir Karteikarten automatisch erstellen.

Smartes Formatieren

Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.

Melde dich an für Notizen & Bearbeitung. 100% for free.

Get FREE ACCESS to all of our study material, tailor-made!

Over 10 million students from across the world are already learning smarter.

Get Started for Free
Illustration