Open in App
Login Anmelden

Select your language

Suggested languages for you:
StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
|
|
Wahrscheinlichkeitsverteilung

Stell Dir vor, Du und Deine Freunde sind auf einem Flohmarkt. Ihr entdeckt dort einen Tombola-Stand, der damit wirbt, dass es verschiedene Preise zu gewinnen gibt. In der Tombola befinden sich 100 Kugeln mit verschiedenen Farben, je seltener die Farbe in der Tombola vorkommt, umso besser wird der Preis. Um…

Inhalt von Fachexperten überprüft
Kostenlose StudySmarter App mit über 20 Millionen Studierenden
Mockup Schule

Entdecke über 50 Millionen kostenlose Lernmaterialien in unserer App.

Wahrscheinlichkeitsverteilung

Illustration

Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken

Jetzt kostenlos anmelden

Nie wieder prokastinieren mit unseren Lernerinnerungen.

Jetzt kostenlos anmelden
Illustration

Stell Dir vor, Du und Deine Freunde sind auf einem Flohmarkt. Ihr entdeckt dort einen Tombola-Stand, der damit wirbt, dass es verschiedene Preise zu gewinnen gibt. In der Tombola befinden sich 100 Kugeln mit verschiedenen Farben, je seltener die Farbe in der Tombola vorkommt, umso besser wird der Preis. Um herauszufinden, wie wahrscheinlich welcher Preis ist, könnt ihr die Wahrscheinlichkeitsverteilung benutzen.

Wahrscheinlichkeitsverteilung Flaticon Mann mit Kugeln StudySmarter

Wahrscheinlichkeitsverteilung von X

Die Wahrscheinlichkeitsverteilung W einer Zufallsgröße X weist jedem Wert xi (mit i=1, 2, 3, ..., n) der Zufallsgröße X die Wahrscheinlichkeit PX=xi zu.

Um die Begrifflichkeiten ein wenig zu vertiefen, kannst Du Dir folgendes Beispiel ansehen:

Du und Dein Freund wollt mit einem Münzwurf entscheiden, wer von Euch beiden das Essen bezahlt. Um es ein wenig interessanter zu machen, werft ihr dreimal, und wer zweimal verliert, muss bezahlen.

Wie groß sind Deine Chancen, nicht bezahlen zu müssen? Dafür gehst Du jetzt einmal das Zufallsexperiment aus Deiner Sicht durch.

1. Ergebnis:

Es wird jetzt dreimal geworfen, entsprechend gibt es 8 verschiedene Ergebnisse:

Fall
1
2
3
4
5
6
7
8
ω
1 1 1
1 1 0
1 0 1
0 1 1
1 0 0
0 1 0
0 0 1
0 0 0

2. Ergebnismenge:

Die Ergebnismenge wäre dann in diesem Fall:

Ω=111,110,101,011,100,010,001,000

3. Zufallsgröße und Wert:

Am Anfang haben Du und Dein Freund festgelegt, dass der Gesamtsieger derjenige ist, der zwei Münzwürfe gewinnt. Du kannst mit dieser Information jetzt die einzelnen Ergebnisse entweder dem Wert 1 für einen Gesamtsieg oder dem Wert 0 für eine Gesamtniederlage zuordnen.

Diese Zuordnung ist die Zufallsgröße.

Fall
1
2
3
4
5
6
7
8
ω
1 1 1
1 1 0
1 0 1
0 1 1
1 0 0
0 1 0
0 0 1
0 0 0
xi=Xω
1
1
1
1
0
0
0
0

4. Wahrscheinlichkeitsverteilung

Jetzt fehlt nur noch die Wahrscheinlichkeitsverteilung

Dafür musst Du jetzt die Wahrscheinlichkeit Deiner jeweiligen Werte berechnen. Beide Werte können jeweils in 4, also der Hälfte der Fälle erreicht werden.

PX=0=12P(X=1)=12

In der Tabelle ergibt das dann:


Fall
1
2
3
4
5
6
7
8
ω
1 1 1
1 1 0
1 0 1
0 1 1
1 0 0
0 1 0
0 0 1
0 0 0
xi=Xω
1
1
1
1
0
0
0
0
P(X=xi)
12
12
12
12
12
12
12
12
Fazit:Ihr habt beide eine 50/50 Chance, nicht bezahlen zu müssen!

Die Wahrscheinlichkeitsverteilung findest Du in der Stochastik unter der Wahrscheinlichkeitsrechnung. Diese Wahrscheinlichkeitsrechnung basiert auf drei grundlegenden Aussagen – den Axiomen von Kolmogorow.

Wahrscheinlichkeitsverteilung – Axiome von Kolmogorow

Das Modell von Kolmogorow besitzt drei Axiome – so heißen die Grundsätze einer Theorie –, die die grundlegenden Eigenschaften einer Wahrscheinlichkeit beschreiben, auf denen die gesamte Wahrscheinlichkeitsrechnung und daher die Wahrscheinlichkeitsverteilung beruht.

SeienΩ={ω1,ω2,ω3,...,ωn} die Ergebnismenge eines Zufallsexperiments, A und B Teilmengen von Ω und P eine Funktion, die jedem A eine reelle Zahl zwischen 0 und 1 zuordnet.

P(A) wird Wahrscheinlichkeit genannt, falls folgende drei Bedingungen (Axiome) erfüllt werden:

1. P(A)0

Diese Bedingung besagt, dass jede Wahrscheinlichkeit für das Eintreffen einer Teilmenge von Ω (Ereignis) nicht negativ ist. Man nennt diese Eigenschaft daher auch: Nichtnegativität.

2. P(Ω)=1

Das zweite Axiom bringt eine weitere Eingrenzung des Wertebereichs von der Funktion P.

Mit Axiom 1 und 2 darf P(A) mit beliebigem A minimal Wert 0 und maximal Wert 1 annehmen.

3. P(AB)=P(A)+P(B), für AB =

Dies bedeutet also, dass für kein Ergebnis beide Ereignisse erfüllt werden. A und B nennt man in diesem Fall auch disjunkt.

Wenn Du mehr über die Axiome erfahren möchtest, dann schau Dir doch die Erklärung Axiome von Kolmogorow an.

Da die Axiome von Kolmogorow die Grundlage für die Wahrscheinlichkeitsrechnung bildet, richten sich auch alle Unterteilungen der Wahrscheinlichkeitsverteilung nach diesen Prinzipien.

Wahrscheinlichkeitsverteilung – Diskrete und stetige Zufallsvariable

Die Wahrscheinlichkeitsverteilung wird in zwei Arten unterteilt, die diskrete und die stetige Zufallsvariable. Diese sind dann jeweils noch mehrmals in verschiedene Kategorien unterteilt. Da es sich bei den Wahrscheinlichkeitsverteilungen um Funktionen handelt, gibt es immer einen Funktionswert und einen x-Wert.

Diskrete Zufallsvariable

Die Diskrete Zufallsvariable zeichnet sich dadurch aus, dass sie eine begrenzte, abzählbare Anzahl an möglichen Ausprägungen hat. Beispiele dafür sind der Münz- oder Würfelwurf. Beide haben nur eine begrenzte Anzahl an möglichen Ausprägungen, der Münzwurf hat zum Beispiel zwei und der Würfelwurf hat dafür 6 Ausprägungen.

Das Wort Ausprägungen ist in diesem Fall ein anderes Wort für die verschiedenen Ergebnismöglichkeiten, also Ergebnisse, die bereits weiter oben definiert wurden.

Die diskrete Wahrscheinlichkeitsverteilung ist die Wahrscheinlichkeitsverteilung einer diskreten Zufallsvariablen.

Stetige Zufallsvariable

Die stetige Zufallsvariable dagegen hat eine unbegrenzte Anzahl an möglichen Ausprägungen. Als Beispiel kannst Du dafür die Haarlänge nehmen. Theoretisch könntest Du sagen, dass es von keinen Haaren, bis zu den weltweit längsten Haaren eine begrenzte Anzahl an Zentimetern gibt. Jedoch, wenn Du die Länge in immer genaueren Einheiten angeben würdest, hättest Du unendlich viele verschiedene Haarlängen auf der Welt, zumal es keine festgelegte Grenze für das Haarwachstum gibt.

Die stetige Wahrscheinlichkeitsverteilung ist die Wahrscheinlichkeitsverteilung einer stetigen Zufallsvariablen.

Wahrscheinlichkeitsfunktion – Dichtefunktion

Die Wahrscheinlichkeitsfunktion ist eine Art der Wahrscheinlichkeitsverteilung. Wenn die Wahrscheinlichkeitsfunktion gleichzeitig auch stetig ist, wird sie Dichtefunktion genannt.

Eine Wahrscheinlichkeitsfunktion wird es auch wirklich nur dann genannt, wenn es sich um eine diskrete Wahrscheinlichkeitsverteilung handelt.

Wahrscheinlichkeitsfunktion

Bei der Wahrscheinlichkeitsfunktion wird die Wahrscheinlichkeit immer nur für einen bestimmten Wert oder eine bestimmte Ausprägung dargestellt. In dem Beispiel eines Würfels werden zum Beispiel nur die Wahrscheinlichkeiten für die jeweiligen Augenzahlen 1, 2, 3, 4, 5, oder 6 gezeigt.

Bei der Wahrscheinlichkeitsfunktion kannst Du Dir merken, dass die Funktion immer wie folgt aussieht:

fx=PX=xi

Für den Würfelwurf würde das tabellarisch zum Beispiel so aussehen:

xi (Augenzahlen)
1
2
3
4
5
6
fx161616161616
In einem Graphen umgesetzt, kannst Du deutlich den Unterschied zu den folgenden Kategorien sehen:

Wahrscheinlichkeitsverteilung Graph Wahrscheinlichkeitsfunktion StudySmarterAbbildung 1: Graph Wahrscheinlichkeitsfunktion

Dichtefunktion

Die Dichtefunktion ist das Äquivalent der Wahrscheinlichkeitsfunktion, mit dem Unterschied, dass es sich um eine stetige Wahrscheinlichkeitsverteilung handelt. Hier kannst Du unter anderem Fälle, wie die menschliche Haarlänge, darstellen.

Die Summe der Wahrscheinlichkeiten aller Ergebnisse ist in einem Zufallsexperiment immer gleich 1. In einer stetigen Zufallsverteilung muss die 1 auf unendlich viele Ausprägungen verteilt werden. Das führt dazu, dass die Wahrscheinlichkeit für eine einzelne Ausprägung praktisch gegen 0 geht. Ebendarum lässt sich in der Dichtefunktion nicht die Wahrscheinlichkeit einer einzelnen Ausprägung ableiten. Um aber trotzdem an ein Ergebnis zu gelangen, kannst Du über mehrere Ausprägungen hinweg integrieren und erhältst so die Wahrscheinlichkeit für diese Menge an Ausprägungen.

Bei der Wahrscheinlichkeitsfunktion kannst Du Dir merken, dass die Funktion immer wie folgt aussieht:

fxPX=xi und PX=xi=0

Ein bekanntes Beispiel für eine stetige Wahrscheinlichkeitsverteilung ist die Körpergröße, in einer Dichtefunktion sieht das dann so aus:

Wahrscheinlichkeitsverteilung Graph Dichtefunktion StudySmarterAbbildung 3: Graph Dichtefunktion

Wahrscheinlichkeitsverteilung – Verteilungsfunktion

Die Verteilungsfunktion gibt es sowohl als stetige als auch diskrete Wahrscheinlichkeitsverteilung. Man nennt sie auch kumulierte Wahrscheinlichkeitsverteilung, da die Wahrscheinlichkeiten aufsummiert werden.

Diskrete Verteilungsfunktion

Bei der Verteilungsfunktion werden die Wahrscheinlichkeiten mehrerer Ausprägungen aufsummiert und dargestellt. Charakteristisch für die Verteilungsfunktion diskreter Zufallsvariablen ist die Stufenform, wie Du sie unten im Beispiel erkennen kannst.

Bei der diskreten Verteilungsfunktion kannst Du Dir merken, dass die Funktion immer so aussieht:

Fx=PXxi

Deine Tabelle könnte in diesem Fall so aussehen:

xi (Augenzahlen)<11x<22x<33x<44x<55x<66
Fx
0
16263646561

Oder in einem Graphen:

Wahrscheinlichkeitsverteilung Graph Verteilungsfunktion StudySmarterAbbildung 2: Graph Verteilungsfunktion

Stetige Verteilungsfunktion

Die Verteilungsfunktion der stetigen Wahrscheinlichkeitsverteilung ist wiederum das Analog zur Verteilungsfunktion der diskreten Wahrscheinlichkeitsfunktion. Hier kannst Du die Wahrscheinlichkeit wieder direkt ablesen, da der Graph Dir jeweils sagt, wie wahrscheinlich es ist, diese Körpergröße oder eine niedrigere zu erreichen.

Bei der stetigen Verteilungsfunktion kannst Du Dir merken, dass die Funktion immer wie folgt aussieht:

Fx=PXx

Für das Beispiel der Körpergröße würdest Du dann zum Beispiel so einen Graphen erhalten:

Wahrscheinlichkeitsverteilung Graph Verteilungsfunktion StudySmarterAbbildung 4: stetige Verteilungsfunktion

Wahrscheinlichkeitsverteilung – Beispiele

In den folgenden Beispielen kannst Du üben, die einzelnen Wahrscheinlichkeitsverteilungen auseinanderzuhalten.

Aufgabe 1

Entscheide anhand der gegebenen Fragestellung, ob es sich um eine diskrete oder stetige Wahrscheinlichkeitsverteilung handelt.

Im Sportunterricht übt Deine Klasse den Weitsprung, wie wahrscheinlich ist es, dass Du genau zwei Meter weit springst?

Lösung

In diesem Beispiel handelt es sich um eine stetige Wahrscheinlichkeitsverteilung. Theoretisch ist es möglich, unendlich viele Strecken weit zu springen, da die Distanz mit immer größerer Genauigkeit bemessen werden könnte.

Aufgabe 2

Entscheide, bei welchem der beiden folgenden Fragestellungen es sich um eine Wahrscheinlichkeitsfunktion handelt.

a)

In einem Sack befinden sich 3 gelbe, 2 blaue und eine grüne Murmel, mit welcher Wahrscheinlichkeit ziehst Du die jeweiligen Farben?

b)

Du ziehst ohne zu schauen einen Zettel aus einer Box, wo die Nummern 1 bis 10 auf Zettel geschrieben sind. Wie groß ist die Wahrscheinlichkeit, dass Du mindestens eine, höchstens eine Sieben ziehst?

Lösung

Die Fragestellung a) ist eine Wahrscheinlichkeitsfunktion, da Du die Wahrscheinlichkeit für jeweils ein Ergebnis berechnest und es nur genau 10 verschiedene Murmeln gibt.

Die Fragestellung b) dagegen handelt es sich um eine diskrete Verteilungsfunktion, das erkennst Du daran, dass Du zwar genauso wie in a) eine abzählbare Menge an Ergebnissen hast, hier aber die Wahrscheinlichkeiten bis zu einem bestimmten Ergebnis aufsummiert werden.

Aufgabe 3

Entscheide anhand der folgenden Fragestellung, ob es sich um eine diskrete oder stetige Verteilungsfunktion handelt.

Du pflanzt Dir Anfang des Jahres eine Avocadopflanze, wie groß ist die Wahrscheinlichkeit, dass die Avocadopflanze, am Ende des Jahres höchstens 15 Zentimeter hoch gewachsen ist?

Lösung

Es handelt sich um eine stetige Verteilungsfunktion, da die Pflanze theoretisch unendlich viele Höhen am Ende des Jahres erreicht haben kann. Das liegt daran, dass die Höhe mit immer größerer Genauigkeit bemessen werden könnte.

Wahrscheinlichkeitsverteilung – Das Wichtigste auf einen Blick

  • Die ErgebnismengeΩ ist die Menge aller möglichen Ergebnisse eines Zufallsexperiments
  • Das Ergebnisω ist eines der möglichen Ergebnisse der Ergebnismenge
  • Die Zufallsgröße oder auch Zufallsvariable genannt, ist eine FunktionX, die jedem Ergebnis ω der Ergebnismenge Ω eines Zufallsexperiments eine reelle Zahl xi zuordnet.
  • Die Wahrscheinlichkeitsverteilung W einer Zufallsgröße X weist jedem Wert xi (mit i=1, 2, 3, ..., n) der Zufallsgröße X die Wahrscheinlichkeit PX=xi zu.
  • Das Modell von Kolmogorow mit drei Axiomen beschreibt bloß die grundlegenden Eigenschaften einer Wahrscheinlichkeit. Du kannst aber innerhalb dieser Eigenschaften noch zwischen verschiedenen Realisierungen von Wahrscheinlichkeit unterscheiden. Die Axiome lauten:
    • 1. P(A)0
    • 2. P(Ω)=1
    • 3. P(AB)=P(A)+P(B), für AB =
  • Die Diskrete Zufallsvariable zeichnet sich dadurch aus, dass sie eine begrenzte, abzählbar Anzahl an möglichen Ausprägungen hat, es wird zwischen Wahrscheinlichkeitsfunktion und diskreter Verteilungsfunktion unterschieden
    • Bei der Wahrscheinlichkeitsfunktion wird die Wahrscheinlichkeit immer nur für einen bestimmten Wert oder eine bestimmte Ausprägung dargestellt, mit der Form fx=PX=xi
    • Bei der diskreten Verteilungsfunktion werden stattdessen die Wahrscheinlichkeiten mehrerer Ausprägungen aufsummiert und dargestellt. Charakteristisch für die Verteilungsfunktion diskreter Zufallsvariablen ist die Stufenform, mit der Form Fx=PXxi
  • Die stetige Zufallsvariable dagegen hat eine unbegrenzte Anzahl an möglichen Ausprägungen, es wird zwischen Dichtefunktion und stetiger Verteilungsfunktion unterschieden
    • Die Dichtefunktion ist das Äquivalent der Wahrscheinlichkeitsfunktion, mit dem Unterschied, dass es sich um eine stetige Wahrscheinlichkeitsverteilung handelt, mit der FormfxPX=xi und PX=xi=0
    • Die Verteilungsfunktion der stetigen Wahrscheinlichkeitsverteilung ist wiederum analog zur Verteilungsfunktion der diskreten Wahrscheinlichkeitsfunktion, mit der Form Fx=PXx

Nachweise

  1. Ulrich Krengel (2005). Einführung in die Wahrscheinlichkeitstheorie und Statistik. Springer
  2. Hans-Otto Georgii (2009). Einführung Einführung in die Wahrscheinlichkeitstheorie und Statistik. de Gruyter
  3. David Meintrup (2005). Stochastik. Theorie und Anwendungen. Springer

Häufig gestellte Fragen zum Thema Wahrscheinlichkeitsverteilung

Die Wahrscheinlichkeitsverteilung kann in Tabellen oder Graphen angegeben werden, grundsätzlich muss bei der Angabe von der Wahrscheinlichkeitsverteilung jedem möglichen Ergebnis auf eine Weise die jeweilige Wahrscheinlichkeit zugeordnet werden.

Die diskrete Wahrscheinlichkeitsverteilung benutzt Du, wenn Du eine feste, abzählbare Menge an möglichen Ergebnissen hast, unter anderem die zwei Seiten einer Münze. Die steige Wahrscheinlichkeitsverteilung benutzt Du, wenn Du unendlich viele mögliche Ergebnisse hast, etwa Größen und Längenangaben, die unendlich klein genau gemessen werden können.

Um eine Wahrscheinlichkeitsverteilung handelt es sich, wenn Du für die verschiedenen Ergebnisse eines Zufallsexperiments jeweils eine Wahrscheinlichkeit gegeben hast.

Die kumulierte Wahrscheinlichkeit, ist die Wahrscheinlichkeit, die Du zum Beispiel in der Verteilungsfunktion berechnest und ist die Summe mehrerer Wahrscheinlichkeiten.

Finales Wahrscheinlichkeitsverteilung Quiz

Wahrscheinlichkeitsverteilung Quiz - Teste dein Wissen

Frage

Was ist die Besonderheit von Axiomen?

Antwort anzeigen

Antwort

Sie sind unbeweisbare Annahmen.

Frage anzeigen

Frage

Was ist ein Laplace-Experiment?

Antwort anzeigen

Antwort

Ein Wahrscheinlichkeitsexperiment, dessen Ergebnisse alle die selbe Wahrscheinlichkeit besitzen.

Frage anzeigen

Frage

Was beschreiben die Axiome von Kolmogorow?

Antwort anzeigen

Antwort

Sie beschreiben die Eigenschaften von Wahrscheinlichkeiten.

Frage anzeigen

Frage

Wie viele Axiome von Kolmogorow gibt es?

Antwort anzeigen

Antwort

Es gibt drei Axiome.

Frage anzeigen

Frage

Wodurch zeichnet sich eine diskrete Zufallsvariable aus?

Antwort anzeigen

Antwort

Die Diskrete Zufallsvariable zeichnet sich dadurch aus, dass sie eine begrenzte, abzählbar Anzahl an möglichen Ausprägungen hat.

Frage anzeigen

Frage

Welche zwei Typen von diskreten Wahrscheinlichkeitsverteilungen gibt es?

Antwort anzeigen

Antwort

Es gibt die Wahrscheinlichkeitsfunktion und diskrete Verteilungsfunktion.

Frage anzeigen

Frage

Wodurch zeichnet sich eine stetige Zufallsvariable aus?

Antwort anzeigen

Antwort

Die stetige Zufallsvariable dagegen hat eine unbegrenzte Anzahl an möglichen Ausprägungen.

Frage anzeigen

Frage

Welche zwei Typen von stetigen Wahrscheinlichkeitsverteilungen gibt es?

Antwort anzeigen

Antwort

Es gibt die Dichtefunktion und die stetige Verteilungsfunktion.

Frage anzeigen

Frage

Handelt es sich bei folgender Fragestellung um eine diskrete oder stetige Wahrscheinlichkeitsverteilung?


Du schneidest eine Möhre in der Mitte durch, wie groß ist die Wahrscheinlichkeit, dass der kleinere Teil weniger als 20 Gramm wiegt.

Antwort anzeigen

Antwort

Es handelt sich hier um eine stetige Wahrscheinlichkeitsverteilung, da die Karotte unendlich genau gewogen werden könnte.

Frage anzeigen

Frage

Handelt es sich bei folgender Fragestellung um eine diskrete oder stetige Wahrscheinlichkeitsverteilung?


Du hast eine Kiste mit 20 Äpfeln, von denen einer bereits braune Stellen hat. Wie wahrscheinlich ist es, dass Du beim Reingreifen ohne hinzusehen den schlechten Apfel erwischst?

Antwort anzeigen

Antwort

Es handelt es sich hier um eine diskrete Wahrscheinlichkeitsverteilung, da die Äpfel die endlich abgezählte Menge 20 besitzen.

Frage anzeigen

Frage

Was beschreiben die Axiome von Kolmogorow?

Antwort anzeigen

Antwort

Das Modell von Kolmogorow mit drei Axiomen beschreibt bloß die grundlegenden Eigenschaften einer Wahrscheinlichkeit. Du kannst aber innerhalb dieser Eigenschaften noch zwischen verschiedenen Realisierungen von Wahrscheinlichkeit unterscheiden.

Frage anzeigen

Frage

Was lässt sich mithilfe des Wahrscheinlichkeitsraums bestimmen?

Antwort anzeigen

Antwort

Mithilfe eines Wahrscheinlichkeitsraumes lässt sich jedes beliebige Ereignis des Experiments die Wahrscheinlichkeiten bestimmen.


Frage anzeigen

Frage

Was ist eine Verteilungsfunktion?

Antwort anzeigen

Antwort

Eine Verteilungsfunktion \(F\) ist eine Funktion, die jedem Wert \(x_i\) einer Zufallsgröße \(X\) die Wahrscheinlichkeit \(P(X \leq x_i)\) zuordnet.

Frage anzeigen

Frage

Die Verteilungsfunktion ist die Stammfunktion der ... ?

Antwort anzeigen

Antwort

Wahrscheinlichkeitsverteilung

Frage anzeigen

Frage

Welche Verteilungsfunktionen gibt es?

Antwort anzeigen

Antwort

stetige

Frage anzeigen

Frage

Ist die abgebildete Verteilungsfunktion stetig oder diskret?

Antwort anzeigen

Antwort

stetig

Frage anzeigen

Frage

Ist die abgebildete Verteilungsfunktion stetig oder diskret?

Antwort anzeigen

Antwort

stetig

Frage anzeigen

Frage

Was kannst Du anhand der Verteilungsfunktion erkennen?

Antwort anzeigen

Antwort

Du kannst anhand der Verteilungsfunktion also erkennen, wie groß die Wahrscheinlichkeit für das Eintreten eines Ergebnisses kleiner oder gleich ist.

Frage anzeigen

Frage

Was ist ein Wahrscheinlichkeitsraum in der Mathematik?

Antwort anzeigen

Antwort

Ein Wahrscheinlichkeitsraum ist ein mathematisches Modell, das aus drei Komponenten besteht: Eine Menge, genannt Stichprobenraum (Ω), eine Menge von Teilmengen davon, genannt Ereignisraum (F), und eine Funktion, genannt Wahrscheinlichkeitsmaß (P), die jeder dieser Teilmengen eine Wahrscheinlichkeit zuordnet.

Frage anzeigen

Frage

Was sind die Bestandteile eines Wahrscheinlichkeitsraums?

Antwort anzeigen

Antwort

Die drei Bestandteile eines Wahrscheinlichkeitsraums sind der Stichprobenraum (Ω), der alle möglichen Ergebnisse eines Zufallsexperiments enthält, der Ereignisraum (F), der aus allen möglichen Kombinationen der Ergebnisse besteht, und das Wahrscheinlichkeitsmaß (P), das jedem Ereignis eine bestimmte Wahrscheinlichkeit zuordnet.

Frage anzeigen

Frage

Wie ist der Wahrscheinlichkeitsraum im täglichen Leben anwendbar?

Antwort anzeigen

Antwort

Im Alltag machst du Gebrauch von einem Wahrscheinlichkeitsraum, wenn du den Wetterbericht anschaust oder Sportwetten und Aktienhandel betreibst, da die Vorhersagen auf vielen verschiedenen möglichen Ergebnissen und deren zugeordneten Wahrscheinlichkeiten basieren.

Frage anzeigen

Frage

Wie wird der Wahrscheinlichkeitsraum in der Quantenphysik verwendet?

Antwort anzeigen

Antwort

In der Quantenphysik werden Wahrscheinlichkeitsräume genutzt, um die Wahrscheinlichkeit eines bestimmten Zustandes eines quantenmechanischen Systems zu bestimmen. Dabei sind die Wahrscheinlichkeitsamplituden wichtige Bestandteile des Wahrscheinlichkeitsraums.

Frage anzeigen

Frage

Was ist die Maßtheorie und welchen Zusammenhang hat sie mit dem Wahrscheinlichkeitsraum?

Antwort anzeigen

Antwort

Die Maßtheorie ist ein Zweig der Mathematik, der sich mit der Quantifizierung von "Größen" befasst. Im Kontext des Wahrscheinlichkeitsraums wird diese "Größe" als Wahrscheinlichkeitsmaß interpretiert.

Frage anzeigen

Frage

Was ist ein Wahrscheinlichkeitsmaß?

Antwort anzeigen

Antwort

Ein Wahrscheinlichkeitsmaß ist eine spezielle Art von Maß, das jeden Ereignisraum mit einer Zahl zwischen 0 und 1 ausstattet. Es erfüllt zwei grundlegende Eigenschaften: das Wahrscheinlichkeitsmaß des gesamten Stichprobenraums ist gleich 1, und die Wahrscheinlichkeitsmaße disjunkter Ereignisse sind additiv.

Frage anzeigen

Frage

Was ist ein Wahrscheinlichkeitsraum?

Antwort anzeigen

Antwort

Ein Wahrscheinlichkeitsraum ist ein mathematisches Modell bestehend aus einem Stichprobenraum, einem Ereignisraum und einem Wahrscheinlichkeitsmaß.

Frage anzeigen

Frage

Wie lautet der Wahrscheinlichkeitsraum beim Würfeln einer Münze und eines Spielzeugwürfels?

Antwort anzeigen

Antwort

Der Stichprobenraum besteht aus {(Kopf,1),(Kopf,2),(Kopf,3),(Zahl,1),(Zahl,2),(Zahl,3)}. Der Ereignisraum beinhaltet alle möglichen Teilereignisse. Das Wahrscheinlichkeitsmaß zeigt, dass jedes Ereignis die Wahrscheinlichkeit \( \frac{1}{6} \) hat.

Frage anzeigen

Frage

Was ist der Stichprobenraum (\( \Omega \)) beim Würfel-Experiment?

Antwort anzeigen

Antwort

Der Stichprobenraum sind alle möglichen Ausgänge des Experiments: Werfen einer 1, 2, 3, 4, 5, 6.

Frage anzeigen

Frage

Was ist der Ereignisraum (F) beim Würfel-Experiment?

Antwort anzeigen

Antwort

Der Ereignisraum ist die Menge aller Teilmengen von \( \Omega \). Bei einem einzigen Würfelwurf entspricht der Ereignisraum einfach dem Stichprobenraum: F = \( \Omega \) = {1, 2, 3, 4, 5, 6}.

Frage anzeigen

Frage

Wie wird das Wahrscheinlichkeitsmaß (P) beim Würfel-Experiment bestimmt?

Antwort anzeigen

Antwort

Bei einem fairen Würfel ist die Wahrscheinlichkeit für das Eintreten jeder Zahl gleich. Das Wahrscheinlichkeitsmaß weist also jedem Element in \( \Omega \) eine Wahrscheinlichkeit von \( \frac{1}{6} \) zu.

Frage anzeigen

Frage

Was zeigt der Wahrscheinlichkeitsraum beim Wurf eines fairen Würfels?

Antwort anzeigen

Antwort

Der Wahrscheinlichkeitsraum zeigt, dass alle Ausgänge gleich wahrscheinlich sind. Es ist genauso wahrscheinlich, eine 1, 2, 3, 4, 5 oder 6 zu würfeln.

Frage anzeigen

Teste dein Wissen mit Multiple-Choice-Karteikarten

Welche Verteilungsfunktionen gibt es?

Ist die abgebildete Verteilungsfunktion stetig oder diskret?

Ist die abgebildete Verteilungsfunktion stetig oder diskret?

Weiter

Karteikarten in Wahrscheinlichkeitsverteilung30

Lerne jetzt

Was ist die Besonderheit von Axiomen?

Sie sind unbeweisbare Annahmen.

Was ist ein Laplace-Experiment?

Ein Wahrscheinlichkeitsexperiment, dessen Ergebnisse alle die selbe Wahrscheinlichkeit besitzen.

Was beschreiben die Axiome von Kolmogorow?

Sie beschreiben die Eigenschaften von Wahrscheinlichkeiten.

Wie viele Axiome von Kolmogorow gibt es?

Es gibt drei Axiome.

Wodurch zeichnet sich eine diskrete Zufallsvariable aus?

Die Diskrete Zufallsvariable zeichnet sich dadurch aus, dass sie eine begrenzte, abzählbar Anzahl an möglichen Ausprägungen hat.

Welche zwei Typen von diskreten Wahrscheinlichkeitsverteilungen gibt es?

Es gibt die Wahrscheinlichkeitsfunktion und diskrete Verteilungsfunktion.

Mehr zum Thema Wahrscheinlichkeitsverteilung

Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!

Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.

  • Karteikarten & Quizze
  • KI-Lernassistent
  • Lernplaner
  • Probeklausuren
  • Intelligente Notizen
Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App! Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!

Finde passende Lernmaterialien für deine Fächer

Melde dich an für Notizen & Bearbeitung. 100% for free.

Fang an mit StudySmarter zu lernen, die einzige Lernapp, die du brauchst.

Jetzt kostenlos anmelden
Illustration