Login Anmelden

Select your language

Suggested languages for you:

Select your language

Suggested languages for you:
StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
|
|

Zweiseitiger Hypothesentest

Zweiseitiger Hypothesentest

Stell Dir vor, Du möchtest eine Behauptung widerlegen und dafür einen Hypothesentest durchführen.

Deine Freundin behauptet: Zehn Prozent der Jugendlichen spielen Volleyball. Du glaubst, dass sie sich das nur ausgedacht hat und die Behauptung nicht stimmt. Du hast aber keine Vermutung, ob es mehr oder weniger sind. Deswegen führst Du einen zweiseitigen Hypothesentest durch. Für die Entscheidungsregel legst Du einen Annahmebereich und einen Ablehnungsbereich fest.

Aber wie genau gehst Du vor und was bedeutet es, dass es ein zweiseitiger Hypothesentest ist?

Zweiseitiger Hypothesentest – einfach erklärt

In der Erklärung "Hypothesentest" kannst Du mehr über das allgemeine Durchführen von Hypothesentests erfahren. Beachte, dass ein Hypothesentest auch manchmal Signifikanztest genannt wird.

Zu Beginn eines jeden Hypothesentests werden die Nullhypothese und die Alternativhypothese aufgestellt. Die Alternativhypothese wird auch Gegenhypothese genannt.

Bei einem zweiseitigen Hypothesentest ist die Alternativhypothese ungerichtet.

Zweiseitiger Hypothesentest – Definition

Die Alternativhypothese gibt keine Richtung für die Abweichung von der Nullhypothese an.

Die Nullhypothese eines Hypothesentests lautet \(H_O: p_0=p\). Gibt die Alternativhypothese \(H_1\) lediglich an, dass die Wahrscheinlichkeit aus der Nullhypothese nicht richtig ist, handelt es sich um einen zweiseitigen Hypothesentest.

$$H_1:p_1\neq p$$

Du kannst einen zweiseitigen Hypothesentest stets daran erkennen, dass die Alternativhypothese keine Aussage darüber trifft, ob die Wahrscheinlichkeit größer oder kleiner ist als in der Nullhypothese angegeben.

An einer Schule gab es über Jahre genauso viele Jungen wie Mädchen. Nun wird vermutet, dass sich dies geändert hat. Es wird eine Stichprobe mit Hypothesentest durchgeführt. Die Nullhypothese lautet:

$$H_0: \text{Die Wahrscheinlichkeit, dass eine Person ein Junge ist, ist }p=0{,}5$$

Da keine Vermutung aufgestellt wird, ob es mehr oder weniger Jungen sind, handelt es sich um einen zweiseitigen Hypothesentest. Die Alternativhypothese lautet:

$$H_1: \text{Die Wahrscheinlichkeit, dass eine Person ein Junge ist, ist }p_1\neq0{,}5$$

Wie unterscheidet sich ein zweiseitiger Hypothesentest aber von einem einseitigen?

Unterschied zweiseitiger Hypothesentest – einseitiger Hypothesentest

Im Gegensatz zum zweiseitigen Hypothesentest gibt es auch einseitige Hypothesentests. Hier wird in der Alternativhypothese angegeben, ob die neue Wahrscheinlichkeit größer oder kleiner ist als die Wahrscheinlichkeit aus der Nullhypothese.

Der zweiseitige und der einseitige Hypothesentest unterschieden sich neben der Alternativhypothese vor allem im Aufbau des Ablehnungsbereichs. Bei einem zweiseitigen Hypothesentest ist der Ablehnungsbereich zweigeteilt und liegt sowohl links als auch rechts vom Erwartungswert. Bei einem einseitigen Hypothesentest besteht der Ablehnungsbereich aus einem "Stück" und liegt entweder links oder rechts vom Erwartungswert.

Mehr zum einseitigen Hypothesentest erfährst Du in der Erklärung "einseitiger Hypothesentest". Klicke dazu einfach auf den Namen.

Zweiseitigen Hypothesentest – durchführen

Wie gehst Du nun vor, um einen zweiseitigen Hypothesentest durchzuführen?

Zuerst stellst Du die Nullhypothese und die Alternativhypothese auf. In der Erklärung "Nullhypothese" erfährst Du mehr über das Aufstellen ebendieser.

In der Alternativhypothese \(H_1\) verneinst Du nur die Wahrscheinlichkeit aus der Nullhypothese und stellst keine Vermutung für die Richtung der Abweichung auf.

Für das Einstiegsbeispiel lauten die Hypothesen:

\begin{align}H_0: \text{Die Wahrscheinlichkeit für das Volleyballspielen ist } p=0{,}1 \\ H_1: \text{Die Wahrscheinlichkeit für das Volleyballspielen ist } p\neq 0{,}1\end{align}

Dann legst Du die Parameter für die Stichprobe und den Hypothesentest fest. Dazu gehören der Stichprobenumfang \(n\) und das Signifikanzniveau \(\alpha\).

Um die Hypothesen zum Volleyballspielen zu prüfen, sollen \(100\) Jugendliche zufällig befragt werden. Es ist \(n=100\). Das Signifikanzniveau wird mit \(\alpha=0{,}05\) festgelegt.

Zweiseitiger Hypothesentest – Signifikanzniveau

Das Signifikanzniveau \(\alpha\) legt bei jedem Hypothesentest die Wahrscheinlichkeit dafür fest, dass die Nullhypothese abgelehnt wird, obwohl sie richtig ist.

Typische Werte für das Signifikanzniveau sind zum Beispiel \(0{,}05\) oder \(0{,}1\).

Die Besonderheit des Signifikanzniveaus bei einem zweiseitigen Hypothesentest ist, dass der Ablehnungsbereich aufgeteilt ist. Dadurch wird für das Aufstellen des Ablehnungsbereichs auch das Signifikanzniveau "aufgeteilt".

Die Wahrscheinlichkeit für das Eintreten eines Wertes aus dem linken Ablehnungsbereich darf maximal nur \(\frac{\alpha}{2}\) sein. Gleiches gilt für den rechten Ablehnungsbereich.

Zweiseitiger Hypothesentest – Annahmebereich und Entscheidungsregel

Was bedeutet es überhaupt, dass der Ablehnungsbereich bei einem zweiseitigen Hypothesentest zweigeteilt ist?

Die Nullhypothese wird sowohl bei besonders kleinen als auch bei besonders großen Werten verworfen. Zwischen diesen Bereichen liegt der Annahmebereich.

Um den Ablehnungs- sowie den Annahmebereich eines zweiseitigen Hypothesentests zu bestimmen, benötigst Du zwei kritische Werte: \(k_l\) und \(k_r\)

Dabei ist \(k_l\) der größte Wert des Ablehnungsbereichs auf der linken Seite des Erwartungswerts. \(k_r\) ist dann der kleinste Wert des Ablehnungsbereichs auf der rechten Seite des Erwartungswerts.

Der Ablehnungsbereich \(\overline{A}\) eines zweiseitigen Hypothesentests mit Stichprobenumfang \(n\) ist

$$\overline{A}=\{0,\dots,k_l,k_r,\dots,n\}$$

Dabei sind \(k_l,k_r\) die kritischen Werte, für die gilt

\begin{align}P(X\leq k_l)\leq \frac{\alpha}{2} \\[0.2 cm]P(X\geq k_r) \leq \frac{\alpha}{2}\end{align}

Du suchst also die kritischen Werte \(k_l, k_r\) für die die kumulierten Wahrscheinlichkeiten \(P(X\leq k_l), P(X\, {\color{#1478c8}\geq }\, k_r)\) jeweil kleiner sind als das halbe Signifikanzniveau sind.

Achtung: Für die kumulierte Wahrscheinlichkeit von \(k_l\) ist \(X\) kleinergleich \(k_l\), für die kumulierte Wahrscheinlichkeit von \(k_r\) ist \(X\) aber größergleich \(k_r\). Dies liegt daran, dass sich der Ablehnungsbereich rechts von \(k_r\) befindet.

Wenn Dein Taschenrechner kumulierte Binomialverteilungen berechnen kann, kannst Du \(k_l\) und \(k_r\) so bestimmen. Du probierst Werte für \(k\) aus und findest so den kritischen Wert.

Ansonsten kannst Du die Tabelle für kumulierte Binomialverteilungen verwenden, um die kritischen Werte zu bestimmen.

\(P(X \leq k_l) \) kannst Du aus der Tabelle ablesen. \(P(X \geq k_r) \) formst Du zuerst um.

Für die kumulierte Wahrscheinlichkeit \(P(X \geq k_r) \) gilt:

\begin{array}{rcll}P(X \geq k_r) & \leq & \frac{\alpha}{2} & \\ 1-P(X<k_r) & \leq & \frac{\alpha}{2} & \\ 1-P(X \leq k_r-1) & \leq & \frac{\alpha}{2} & |-1 \\ -P(X \leq k_r-1) & \leq & \frac{\alpha}{2} -1 & |·(-1) \\ P(X \leq k_r-1) & \geq & 1-\frac{\alpha}{2} \end{array}

Wenn Du beim Umformen mit \(-1\) multiplizierst, wird aus dem "kleinergleich" ein "größergleich".

\(P(X \leq k_r-1) \geq 1-\frac{\alpha}{2} \) kannst Du aus der Tabelle für kumulierte Binomialverteilungen ablesen.

Für den zweiseitigen Hypothesentest zum Volleyballspielen mit \(n=100\) und \(\alpha =0{,}05\) soll der Ablehnungs- sowie der Annahmebereich der Nullhypothese bestimmt werden.

Von den \(100\) befragtem Jugendlichen gaben \(7\) an, dass sie Volleyball spielen.

Die Hypothesen lauteten:

\begin{align}H_0: \text{Die Wahrscheinlichkeit für das Volleyballspielen ist } p=0{,}1 \\ H_1: \text{Die Wahrscheinlichkeit für das Volleyballspielen ist } p\neq 0{,}1\end{align}

Zuerst bestimmst Du mithilfe der Tabelle für \(p=0{,}1\) und \(n=100\) den Wert \(k_l\) mit \((P(X \leq k_l)\leq 0{,}025\). Es ist

\begin{align}P(X\leq 4)=0{,}0237 \\ P(X\leq 5)=0{,}0576\end{align}

Es ist \(k_l=4\).Für den rechten Teil des Ablehnungsbereichs verwendest Du \(P(X \leq k_r-1) \geq 0{,}975\). Es ist

\begin{align}P(X \leq 23)=0{,}9621 \\ P(X \leq 24)=0{,}9783\end{align}

Dann ist \(k_r-1=24\) und somit \(k_r=25\).

Der Ablehnungsbereich der Nullhypothese ist

$$\overline{A}=\{0,\dots,4,25,\dots,100\}$$

Der Annahmebereich ist dann

$$A=\{5,\dots,24\}$$

Bei der Stichprobe gaben \(7\) Jugendliche an, dass sie Volleyball spielen. Die Nullhypothese wird angenommen.

Die Entscheidungsregel legt fest, bei welchem Stichprobenergebnis (Trefferanzahl) die Nullhypothese angenommen oder abgelehnt werden soll. Liegt das Ergebnis der Stichprobe im Annahmebereich der Nullhypothese, soll diese angenommen werden. Liegt das Ergebnis im Ablehnungsbereich der Nullhypothese, soll die Alternativhypothese angenommen werden.

Zweiseitiger Hypothesentest – Fehler 1. Art und Fehler 2. Art

Wie bei jedem Hypothesentest können auch bei einem zweiseitigen Hypothesentest Fehler 1. und 2. Art entstehen.

Ein Fehler 1. Art entsteht, wenn die Nullhypothese abgelehnt wird, obwohl sie wahr ist.

Ein Fehler 2. Art tritt ein, wenn die Nullhypothese angenommen wird, obwohl sie falsch ist.

Weitere Informationen und Beispiel zum Fehler 1. und 2. Art findest Du in der Erklärung "Fehler Hypothesentest".

Die Besonderheit beim zweiseitigen Hypothesentest und dem Fehler 1. Art ist die Berechnung der Wahrscheinlichkeit für einen Fehler 1. Art.

Die Wahrscheinlichkeit für einen Fehler 1. Art entspricht genau der Wahrscheinlichkeit des Eintretens des Ablehnungsbereichs. Beim zweiseitigen Hypothesentest ist der Ablehnungsbereich zweigeteilt. Deswegen setzt sich auch die Wahrscheinlichkeit für einen Fehler 1. Art aus zwei Wahrscheinlichkeiten zusammen.

Die Wahrscheinlichkeit für das Eintreten eines Fehler 1. Art ist

$$P(\text{Fehler 1. Art})= P(X\leq k_l)+P(X\geq k_r)$$

Diese Wahrscheinlichkeit für einen Fehler 1. Art ist immer kleiner als das Signifikanzniveau.

Für das obige Beispiel war der Ablehnungsbereich

$$\overline{A}=\{0,\dots,4,25,\dots,100\}$$

Die Wahrscheinlichkeit für einen Fehler 1. Art ist

\begin{align}P(\text{Fehler 1. Art})&=P(X\leq 4)+P(X \geq 25) \\ & =P(X\leq 4)+(1-P(X \leq 24) \\ &=0{,}0237 +(1-0{,}9783) \\ &=0{,}0454\end{align}

Zweiseitiger Hypothesentest – Sigma-Regeln

Ist die Standardabweichung \(\sigma\) einer binomialverteilten Zufällsgröße \(X\) größerer als 3, kannst Du sie mit einer Normalverteilung nähren. Für normalverteilte Zufallsgrößen gelten die Sigma-Regeln.

Die Sigma-Regeln besagen, dass es für normalverteilte Zufallsgrößen bestimmte Intervalle \(I\) gibt, in denen ein bestimmter Prozentsatz an Werten liegen. Mit diesen Intervallen kannst Du den Ablehnungs- sowie den Annahmebereich der Nullhypothese bestimmen.

Intervall \(I\)\(P(X \in I)\)
\([\mu-1{,}64\sigma;\mu-1{,}64\sigma]\)\(\approx 0{,}90\)
\([\mu-1{,}96\sigma;\mu-1{,}96\sigma]\)\(\approx 0{,}95\)
\([\mu-2{,}58\sigma;\mu-2{,}58\sigma]\)\(\approx 0{,}99\)

Für ein Signifikanzniveau von zum Beispiel \(\alpha=0{,}05\) kannst Du den Ablehnungsbereich mit dem Intervall \([\mu-1{,}96\sigma;\mu-1{,}96\sigma]\) bestimmen.

Zweiseitiger Hypothesentest – Aufgaben mit Lösungen und Beispiele

Die folgenden Aufgaben kannst Du zum Üben verwenden. Du kannst Dir die Lösungen aber auch als Beispiel ansehen.

Aufgabe 1

Nina sagt, dass 50 Prozent ihrer Schule zu Fuß zur Schule kommen. Laith glaubt das nicht und möchte es mit einem Hypothesentest überprüfen. Stell die Nullhypothese und die Alternativhypothese bzw. Gegenhypothese für einen zweiseitigen Hypothesentest auf.

Lösung

Die Hypothesen lauten:

\begin{align}H_0: \text{Die Wahrscheinlichkeit, dass ein Kind zu Fuß zur Schule kommt ist } p=0{,}5 \\H_1: \text{Die Wahrscheinlichkeit, dass ein Kind zu Fuß zur Schule kommt ist } p\neq 0{,}5\end{align}

Du kannst die Hypothesen auch auf andere Art formulieren oder in den Hypothesen nur die Wahrscheinlichkeiten angeben.

Aufgabe 2

Stelle für die Hypothesen aus Aufgabe 1 und einen Stichprobenumfang \(n=50\) den Annahme- sowie den Ablehnungsbereich der Nullhypothese. Das Signifikanzniveau soll \(\alpha=0{,}1\) sein.

Lösung

Für den Ablehnungsbereich \(\overline{A}\) benötigst Du die kritischen Werte \(k_l,k_r\) mit

\begin{align}P(X\leq k_l) \leq 0{,}05 \\P(X \geq k_r) \leq 0{,}05\end{align}

\(P(X\leq k_l) \leq 0{,}05\) kannst Du mithilfe der Tabelle für kumulierte Binomialverteilungen mit \(n=50, p=0{,}5\) bestimmen. Es ist

\begin{align}P(X\leq 18)=0{,}0325 \\ P(X\leq 19)=0{,}0595\end{align}

Somit ist \(k_l=18\).

Für \(P(X \geq k_r) \leq 0{,}05\) formst Du zuerst um und verwendest \(P(X \leq k_r-1) \geq 0{,}95\).

\begin{align}P(X\leq 30)=0{,}9405 \\ P(X \leq 31)=0{,}9675\end{align}Aus \(k_r-1=31\) kannst Du \(k_r=32\) bestimmen.

Der Ablehnungsbereich der Nullhypothese ist

$$\overline{A}=\{0,\dots,18,32,\dots,50\}$$

Daraus ergibt sich der Annahmebereich

$$A=\{19,\dots,31\}$$

Die Entscheidungsregel lauter:

Die Nullhypothese wird angenommen, wenn das Ergebnis der Stichprobe zwischen 19 und 31 liegt. Die Alternativhypothese wird angenommen, wenn das Ergebnis der Stichpobe entweder zwischen 0 und 18 oder zwischen 32 und 50 liegt.

Zweiseitiger Hypothesentest – Das Wichtigste

  • Die Alternativhypothese eines zweiseitigen Hypothesentests ist ungerichtet.
  • Der Ablehnungsbereich eines zweiseitigen Hypothesentests ist zweigeteilt
    • Ablehnungsbereich \(\overline{A}=\{0,\dots,k_l,k_r,\dots,n\}\)
    • Annahmebereich \(A=\{k_l+1,\dots,k_r-1\}\)
  • \(P(X \leq k_l ) \leq \frac{\alpha}{2}\) kannst Du aus der Tabelle für kumulierte Binomialverteilungen ablesen.
  • \(P(X \geq k_r ) \geq \frac{\alpha}{2}\) formst Du um zu \(P(X\leq k_r-1)\leq 1-\frac{\alpha}{2} \) und liest dann aus der Tabelle ab.

Nachweise

  1. Hartmann; Lois (2015). Hypothesentest. In: Hypothesen Testen. essentials. Springer Gabler.
  2. Baum et al. (2009). Lambacher Schweizer 11/12, Mathematik für Gymnasien, Gesamtband Oberstufe Niedersachsen. Ernst Klett Verlag.

Häufig gestellte Fragen zum Thema Zweiseitiger Hypothesentest

Eine zweiseitige Hypothese ist die Alternativhypothese in einem zweiseitigen Hypothesentest.

Die zweiseitige Hypothese gibt an, dass die Wahrscheinlichkeit aus der Nullhypothese nicht richtig ist. Es gibt aber keine Vermutung über die Richtung der Abweichung. Sie kann in beide Richtungen (zweiseitig) abweichen.

Bei einem zweiseitigen Hypothesentest gibt die Alternativhypothese keine Vermutung über die Richtung der Veränderung an. Die Wahrscheinlichkeit aus der Nullhypothese wird verneint. Es wird aber nicht angegeben, ob sie kleiner oder größer ist.

Dadurch gibt es bei einem zweiseitigen Hypothesentest einen zweigeteilten Ablehnungsbereich.

Du wendest einen zweiseitigen Hypothesentest an, wenn eine Abweichung von der Wahrscheinlichkeit aus der Nullhypothese in beide Richtungen von Bedeutung ist.

Möchtest Du untersuchen, ob die Wahrscheinlichkeit anders ist als in der Nullhypothese angegeben, verwendest Du einen zweiseitigen Hypothesentest. 

Hast Du eine Vermutung, ob die Wahrscheinlichkeit entweder kleiner oder größer ist, verwendest Du einen einseitigen Hypothesentest.

Was bedeutet zweiseitig signifikant?

Zweiseitig signifikant bedeutet, dass eine Abweichung vom Erwartungswert sowohl in die eine Richtung (links) als auch in die andere Richtung (rechts) von Bedeutung ist. Ist eine Abweichung zweiseitig signifikant, wird ein zweiseitiger Hypothesentest durchgeführt.

Finales Zweiseitiger Hypothesentest Quiz

Frage

Vervollständige den Satz:


Bei einem zweiseitigen Hypothesentest ...

Antwort anzeigen

Antwort

... verneint die Alternativhypothese die Wahrscheinlichkeit aus der Nullhypothese.

Frage anzeigen

Frage

Welche Aussagen über einen zweiseitigen Hypothesentest sind richtig?

Wähl aus.

Antwort anzeigen

Antwort

Der Ablehnungsbereich der Nullhypothese ist zweigeteilt.

Frage anzeigen

Frage

Die Nullhypothese eines Hypothesentests lautet:

$$H_0: p=0{,}3$$


Wähl die Alternativhypothese für einen zweiseitigen Hypothesentest aus.

Antwort anzeigen

Antwort

$$H_1:p \neq 0{,}3$$

Frage anzeigen

Frage

Es wird ein zweiseitiger Hypothesentest für eine Stichprobe mit Umfang \(n\) durchgeführt. Welcher Ablehnungsbereich \(\overline{A}\) der Nullhypothese ist möglich? Wähl aus.

Antwort anzeigen

Antwort

$$\overline{A}=\{0,\dots,k_l,k_r,\dots,n\}$$

Frage anzeigen

Frage

Du führst einen zweiseitigen Hypothesentest durch. Der Ablehnungsbereich der Nullhypothese ist \(\overline{A}=\{0,\dots,k_l,k_r,\dots,n\}\).

Was berechnest Du mit \(P(X\leq k_l)+P(X\geq k_r)\)? Wähl aus.

Antwort anzeigen

Antwort

Wahrscheinlichkeit für einen Fehler 1. Art

Frage anzeigen

Frage

Die Hypothesen für einen Hypothesentest lauten:

\begin{align}
H_0: p=0{,}7 \\ 
H_1: p \neq 0{,}7
\end{align}


Es handelt sich um einen ... Hypothesentest. Gib das richtige Wort für die Art des Hypothesentests an.

Antwort anzeigen

Antwort

zweiseitigen

Frage anzeigen

Frage

Für einen zweiseitigen Hypothesentest ist 

$$  \overline{A}=\{0,\dots,k_l,k_r,\dots ,n\}$$

der ... der Nullhypothese.

Gib das richtige Wort an.

Antwort anzeigen

Antwort

Ablehnungsbereich

Frage anzeigen

Frage

Die Nullhypothese eines zweiseitigen Hypothesentests lautet 

$$H_0: p=0{,}8$$

Gib die Alternativhypothese \(H_1\) an.

Antwort anzeigen

Antwort

$$H_1: p\neq 0{,}8$$

Frage anzeigen

Frage

Erkläre, wieso bei einem zweiseitigen Hypothesentest das Signifikanzniveau \(\alpha\) für den linken und rechten Teil des Ablehnungsbereichs jeweils halbiert wird.

Antwort anzeigen

Antwort

Die Wahrscheinlichkeit für einen Fehler 1. Art darf insgesamt nicht größer als das Signifikanzniveau \(\alpha\) sein. 

Der Ablehnungsbereich besteht aus einem linken und einem rechten Teil. Zusammen darf deren Wahrscheinlichkeit nicht größer als \(\alpha\) sein. Deswegen darf die Wahrscheinlichkeit für jeden einzelnen Teil nicht größer als \(\frac{\alpha}{2}\) sein.

Frage anzeigen

Frage

Der Ablehnungsbereich der Nullhypothese eines zweiseitigen Hypothesentests ist \(\overline{A}=\{0,\dots,k_l,k_r,\dots,n\} \).


Beschreibe, wie Du vorgehst, um \(k_l\) zu bestimmen.

Antwort anzeigen

Antwort

\(k_l\) ist die Grenze des linken Teils des Ablehnungsbereichs. Es ist der letzte Wert, für den die kumulierte Binomialverteilung gerade eben noch kleiner ist als das halbe Signifikanzniveau:

$$P(X \leq k_l)<\frac{\alpha}{2}$$

Du suchst also in der Tabelle für kumulierte Binomialverteilungen für das entsprechende \(n,p\) den Wert, der diese Bedingung gerade eben noch erfüllt.

Frage anzeigen

Frage

Forme $$P(X\geq k_r)\leq \frac{\alpha}{2}$$ um, sodass Du einen Wert aus der Tabelle für kumulierte Binomialverteilungen ablesen kannst.

Antwort anzeigen

Antwort

Um aus der Tabelle für kumulierte Binomialverteilungen ablesen zu können, muss \(X\) größergleich einem Wert sein und nicht kleinergleich.

\begin{array}{rcll}
P(X\geq k_r)& \leq &\frac{\alpha}{2} \\
1-P(X < k_r)& \leq &\frac{\alpha}{2} \\
1-P(X \leq k_r-1) & \leq & \frac{\alpha}{2} & |-1 \\
-P(X \leq k_r-1) & \leq & -1+\frac{\alpha}{2} & |·(-1) \\
P(X \leq k_r-1) & \geq & 1-\frac{\alpha}{2}
\end{array}

Frage anzeigen

Frage

Die Hypothesen für einen zweiseitigen Hypothesentest lauten

\begin{align}
H_0: p=0{,}25 \\ 
H_1: p\neq 0{,}25
\end{align}
Es wird eine Stichprobe mit Umfang \(n=50\) durchgeführt.

Bestimme den Ablehnungsbereich \(\overline{A}\) der Nullhypothese mit Signifikanzniveau \(\alpha = 0{,}05\).

Antwort anzeigen

Antwort

Gesucht sind \(k_l,k_r\), sodass

\begin{align}
P(X\leq k_l)\leq 0{,}025 \\
P(X\geq k_r) \leq 0{,}025
\end{align}
\(P(X\leq k_l)\leq 0{,}025 \) kannst Du direkt aus der Tabelle für kumulierte Binomialverteilungen mit \(n=50, p=0{,}25\) ablesen.

\begin{align}
P(X \leq 6)=0{,}0194 \\
P(X \leq 7)=0{,}0453
\end{align}

Es ist \(k_l =6\).

Um \(k_r\) zu bestimmen, formst Du zuerst um.

\begin{align}
P(X\geq k_r) \leq 0{,}025 \\
P(X \leq k_r-1) \geq 0{,}975
\end{align}

Nun liest Du aus der Tabelle ab:

\begin{align}
P(X \leq 18)=0{,}9713 \\
P(X \leq 19)=0{,}9861
\end{align}
Es ist \(k_r-1 = 19\) und somit \(k_r=20\).

Der Ablehnungsbereich der Nullhypothese ist

$$\overline{A}=\{0,\dots,6,20,\dots,50\}$$

Frage anzeigen

Frage

Der Ablehnungsbereich eines zweiseitigen Hypothesentests ist:

$$\overline{A}=\{0,\dots,15,35,\dots,50\}$$

Stelle die Entscheidungsregel auf.

Antwort anzeigen

Antwort

Die Nullhypothese wird angenommen, wenn das Ergebnis der Stichprobe zwischen 16 und 34 liegt. Die Alternativhypothese wird angenommen, wenn das Ergebnis der Stichprobe entweder zwischen 0 und 15 oder zwischen 35 und 50 liegt.

Frage anzeigen

Frage

Welchen Wert muss die Standardabweichung \(\sigma\) überschreiten, damit Du die Sigma-Regeln zum Bestimmen des Annahmebereichs eines Hypothesentests verwenden darfst? Gib an.

Antwort anzeigen

Antwort

3

Frage anzeigen

Frage

Welcher Annahmebereich gehört zu einem zweiseitigen Hypothesentest?

Wähl aus.

Antwort anzeigen

Antwort

$$A=\{k_l+1,\dots,k_r-1\}$$

Frage anzeigen

Mehr zum Thema Zweiseitiger Hypothesentest
60%

der Nutzer schaffen das Zweiseitiger Hypothesentest Quiz nicht! Kannst du es schaffen?

Quiz starten

Finde passende Lernmaterialien für deine Fächer

Alles was du für deinen Lernerfolg brauchst - in einer App!

Lernplan

Sei rechtzeitig vorbereitet für deine Prüfungen.

Quizzes

Teste dein Wissen mit spielerischen Quizzes.

Karteikarten

Erstelle und finde Karteikarten in Rekordzeit.

Notizen

Erstelle die schönsten Notizen schneller als je zuvor.

Lern-Sets

Hab all deine Lermaterialien an einem Ort.

Dokumente

Lade unzählige Dokumente hoch und habe sie immer dabei.

Lern Statistiken

Kenne deine Schwächen und Stärken.

Wöchentliche

Ziele Setze dir individuelle Ziele und sammle Punkte.

Smart Reminders

Nie wieder prokrastinieren mit unseren Lernerinnerungen.

Trophäen

Sammle Punkte und erreiche neue Levels beim Lernen.

Magic Marker

Lass dir Karteikarten automatisch erstellen.

Smartes Formatieren

Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.

Melde dich an für Notizen & Bearbeitung. 100% for free.

Get FREE ACCESS to all of our study material, tailor-made!

Over 10 million students from across the world are already learning smarter.

Get Started for Free
Illustration