Ein Würfel wird zweimal geworfen. Die Zufallsvariable \(X\) gibt die Augenzahl im 1. Wurf an. Die Zufallsvariable \(Y\) hingegen ordnet die Augensumme beider Würfel zu.
Stell Dir nun vor, im 1. Wurf wird eine 2 geworfen. Die Summe nach dem 2. Wurf soll 7 sein. Damit dies gelingt, muss im 2. Wurf eine 7 geworfen werden. Dann ist
\begin{align} P(X=2,Y=7)& =\underbrace{\frac{1}{6}}_{\text{2 im 1. Wurf}}·\underbrace{\frac{1}{6}}_{\text{5 im 2. Wurf}} \\ & = \frac{1}{36} \end{align}
Betrachte jetzt die beiden Zufallsvariablen einzln:
Für \(Y=7\) gibt es verschieden Möglichkeiten: \( (1,6),(2,5),(3,4),(4,3),(5,2),(6,1) \)
Dies sind sechs Möglichkeiten. Jede dieser Möglichkeiten hat eine Wahrscheinlichkeit von \(\frac{1}{36}\). Deswegen ist
Es ist:
\begin{array}{rrcl}\,& P(X=2,Y=7) & = & \frac{1}{36} \\ & P(X=2) · P(Y=7) & = & \frac{1}{6} · \frac{1}{6} = \frac{1}{36} \\[0.5 cm]\Rightarrow & P(X=2,Y=7) & = & P(X=2)·P(Y=7) \end{array}
Die Zufallsvariablen \(X,Y\) sind für \(X=2,Y=7\) stochastisch unabhängig. Damit die Zufallsvariablen aber generell unabhängig sind, muss dies für alle Werte von \(X,Y\) gelten.
Wieder wird im 1. Wurf eine 2 geworfen. Die Summe der Augenzahlen soll nun aber 8 sein.
\begin{align} P(X=2,Y=8)& =\underbrace{\frac{1}{6}}_{\text{2 im 1. Wurf}}·\underbrace{\frac{1}{6}}_{\text{6 im 2. Wurf}} \\ & = \frac{1}{36} \end{align}
Es bleibt bei \(P(X=2)=\frac{1}{6}\).
Für \(Y=8\) gibt es folgende fünf Möglichkeiten: \( (2,6),(3,5),(4,4),(5,3),(6,2) \)
Auch hier hat jede dieser fünf Möglichkeiten eine Wahrscheinlichkeit von \(\frac{1}{36}\). Dann ist
Daraus folgt
\begin{array}{rrcl}& P(X=2,Y=8)&=&\frac{1}{36} \\ &P(X=2)·P(X=8)&=&\frac{1}{6}·\frac{5}{36}=\frac{5}{216} \\ \Rightarrow & P(X=2,Y=8) & \neq & P(X=2)·P(X=8)\end{array}
Sobald Du ein Gegenbeispiel gefunden hast, weißt Du, dass die Zufallsvariablen nicht unabhängig sind. Die Zufallsvariablen \(X,Y\) sind in diesem Beispiel also nicht stochastisch unabhängig.