Xerophyten

Kakteen sind die wohl beliebtesten Zimmerpflanzen, weil sie so pflegeleicht sind und extrem wenig Wasser benötigen. Das liegt daran, dass es sich bei den Kakteen um Xerophyten handelt, die natürlicherweise nur in Wüstengebieten vorkommen. 

Los geht’s Leg kostenfrei los
Xerophyten Xerophyten

Erstelle Lernmaterialien über Xerophyten mit unserer kostenlosen Lern-App!

  • Sofortiger Zugriff auf Millionen von Lernmaterialien
  • Karteikarten, Notizen, Übungsprüfungen und mehr
  • Alles, was du brauchst, um bei deinen Prüfungen zu glänzen
Kostenlos anmelden

Lerne mit Millionen geteilten Karteikarten

Leg kostenfrei los

Wandle deine Dokumente mit AI in Karteikarten um

Inhaltsverzeichnis
Inhaltsangabe

    Xerophyten Definition

    Xerophyten sind Pflanzen, die gut an einen Standort mit begrenztem Wasserangebot angepasst sind. Sie werden auch Trockenpflanzen genannt.

    Xerophyten Standorte

    Xerophyten findet man hauptsächlich an Standorten, an denen eine Wasserknappheit herrscht. Diese kann klimatisch bedingt sein, wie es in ariden oder semiariden Klimazonen der Fall ist (etwa in Wüsten oder Halbwüsten). Auch in sehr kalten Gegenden, in denen kein Wasser in flüssiger Form zur Verfügung steht, kommen Xerophyten vor, das können zum Beispiel Tundren oder Eiswüsten sein.

    Zudem kann eine Wasserknappheit auch durch die Beschaffenheit der Böden verursacht sein. Auf sandigen Böden kann sich das Wasser nicht gut halten und versickert schnell. Lehmböden sind häufig so hart und verdichtet, dass das Regenwasser nicht einsinkt, sondern nur oberflächlich abläuft, ähnlich bei Kalkgestein, bei dem das Wasser durch Risse und Furchen schnell anläuft.

    Xerophyten Einteilung

    Die beiden Botaniker Abraham Fahn und David F. Cutler entwickelten in ihrer 1992 erschienen Enzyklopädie über Xerophyten eine systematische Einteilung der Trockenpflanzen, die sich nach deren Anpassungsstrategien richtete. Sie unterteilten die Xerophyten in drought escaping und drought resisting.

    Drought escaping (Trockenheit ausweichend)

    Zu den drought escaping Pflanzen gehören die Ephemeren (einjährige Pflanzen), die teilweise in den Wüsten zu finden sind. Sie warten in einem Überdauerungsstadium, bis genügend Regen gefallen ist. Daraufhin durchlaufen sie während einer kurzen Periode, in der der Boden feucht genug ist, ihren gesamten Lebenszyklus. Die Ephemeren nutzen das Zeitfenster von einigen Tagen, bis wenigen Wochen, um auszutreiben, zu blühen und sich schließlich auch durch Samenverbreitung fortzupflanzen. Außer ihrer kurzen Lebensdauer besitzen sie keine besonderen Anpassungen an die Trockenheit.

    Xerophyten Ephemere Arten StudySmarterAbbildung 1: Ephemere in der Atacama-Wüste, Chile

    Drought resisting (Trockenheit widerstehend)

    Die Pflanzen, die zu dieser Gruppe zuzuordnen sind, sterben während ungünstiger Umweltbedingungen, wie starker Hitze, nicht komplett ab, sondern überdauern diese. Sie werden weiterhin in die drought evading (Trockenheit vermeidend) und drought enduring (Trockenheit aushaltend) Pflanzen eingeteilt.

    Drought evading (Trockenheit vermeidend)

    Zu dieser Gruppe unter anderem gehören die Geophyten, die Trockenzeiten durch die Bildung von unterirdischen Überdauerungsorgane wie Knollen, Zwiebeln, Rüben oder Wurzelstöcke überleben können.

    Geophyten sind mehrjährige krautige Pflanzen, die für sich ungünstige Umweltbedingungen durch unterirdische Organe überdauern können, während die oberirdischen Pflanzenteile absterben.

    Drought enduring (Trockenheit aushaltend)

    Sukkulenten sind Pflanzen, die durch verschiedene Anpassungen, wie der Sukkulenz, in der Lage sind, Trockenheit aushalten zu können.

    Wenn Du mehr zu diesen besonderen Pflanzen wissen möchtest, schau Dir gerne den StudySmarter-Artikel “Sukkulente” an.

    Als Sukkulenz bezeichnet man die Fähigkeit einer Pflanze, interne Wasserspeicher in fleischig-saftigen Geweben herzustellen. Das Wasser wird hierzu in große Zellsaftvakuolen in den Zellen aufgenommen. Abhängig davon, in welchem Organ die Wasserspeicherung stattfindet, nennt man es Blatt-, Spross- oder Wurzelsukkulenz.

    Abgesehen von diesen internen Wasserspeichern, gibt es auch externe Wasserspeicher in Trockenpflanzen.

    Ein interessantes Beispiel für externe Wasserspeichern sind die Zisternen. Sie werden von Bromelien mit ihren Blattbasen gebildet. Die Blätter wachsen dort so eng aneinander, dass sich dort ein kleines Becken bilden kann. Darin speichern sie einfallendes Regenwasser, welches dann bei Bedarf durch Haare auf den Blättern, den sogenannten Saugschuppen aufgenommen werden kann.

    Wie Du auf dem Foto erkennen kannst, bildet sich ein eigenes Biotop in dieser Zisterne, in dem auch wiederum andere Pflanzen und Mikroorganismen wachsen können. Deren Nährstoffe kann die Pflanze zusätzlich aufnehmen.

    Xerophyten Zisterne Bromelie Arten StudySmarterAbbildung 2: Zisterne in einer Bromelie

    Xerophyten Anpassungen

    Dadurch, dass Xerophyten hauptsächlich in sehr trockenen Gebieten vorkommen, haben sich evolutionär einige Anpassungen entwickelt, die der Pflanze ein Wachstum in diesem extremen Habitat ermöglicht. Diese Arten von Anpassungen nennt man Xeromorphien. Sie betreffen Anpassungen an den Blättern, Wurzeln und Sprossachsen.

    Blätter

    Bei Xerophyten ist es wichtig, die Transpiration über eine möglichst kleine Blattgröße und Blattmenge einzuschränken, damit so wenig Wasser wie möglich verloren geht. Transpiration kann über verschiedene Wege stattfinden, die größte Bedeutung hat hierbei die stomatäre Transpiration über die Spaltöffnungen auf der Unterseite der Blätter.

    Die Stomata, auch Spaltöffnungen genannt, sind Poren in der Epidermis der Zellen, die einen Gasaustausch und Transpiration verursachen. Zwei bohnenförmige Schließzellen, die durch osmotischen Wassereinstrom und Wasserausstrom ihre Form ändern, bilden den Spaltöffnungskomplex.

    Um die stomatäre Transpiration zu verringern, gibt es bei manchen Arten sogenannte Rollblätter, die sich nach unten einrollen und so einen windstillen, geschützten Raum für die Stomata bilden. Häufig sind Haare, auch Trichome genannt, auf den Blättern, durch die zum einen die einfallende Lichtintensität gesenkt wird, zum anderen aber auch erneut die Transpiration verringert wird. Zusätzlich sind die Spaltöffnungen eingesenkt, damit durch den Wind der austretende Wasserdampf nicht so schnell entweicht.

    Durch die kutikuläre Transpiration verliert das Blatt deutlich weniger Wasser, jedoch gibt es auch hier Anpassungen, um das zu verringern. Hierbei wird die Kutikula durch wachsähnliche Substanzen deutlich verdickt.

    Teilweise werden die Blätter der Xerophyten auch so weit zurückgebildet, dass sie zu Dornen werden, das ist zum Beispiel bei Sukkulenten der Fall.

    Blattquerschnitt

    Auf der Abbildung 3 kannst Du zunächst den Blattquerschnitt durch ein Oleanderblatt erkennen. Auf der Oberseite kannst Du die Kutikula sehen, die die mehrschichtige Epidermis von der Umwelt abschirmt. Darauf folgt das doppelschichtige Palisadengewebe, in welchem viele Chloroplasten vorhanden sind, in denen die Fotosynthese abläuft.

    Das Schwammgewebe ist ein unregelmäßig aufgebautes Gewebe, welches hauptsächlich für den Gasaustausch verantwortlich ist. Die Spaltöffnungen sind in einer Einsenkung versteckt und mit toten Haaren, den Trichomen, geschützt.

    Das zweite Bild in der Abbildung zeigt ein Rollblatt der Art Thylanthus. Hier erkennt man, dass die Stomata noch besser vor Wasserverlust geschützt sind, weil sich das Blatt nach unten einrollt. Auf der Unterseite sind erneut Trichome zu finden. Das letzte Bild zeigt ein Faltblatt des Federgrases im normalen Zustand (in grün) und im eingerollten Zustand (in blau) bei Dürre.

    Xerophyt Blattquerschnitt Xerophyten StudySmarterAbbildung 3: Blattquerschnitt von Xerophyten (Oleander, Federgras, Rollblatt).

    Palisadengewebe

    Das Palisadengewebe der Xerophyten ist doppelschichtig und beinhaltet eine große Anzahl von Chloroplasten. Daraus resultiert, dass das Palisadengewebe hauptsächlich für die Fotosynthese der Pflanze verantwortlich ist. Dadurch, dass auf die meisten Xerophyten eine hohe Sonneneinstrahlung wirkt, ist es sinnvoll, dass das viele Licht durch die Chloroplasten in Energie umgewandelt wird. Allerdings kann es auch zu einer Überhitzung in den Chloroplasten kommen, wenn die Sonneneinstrahlung zu hoch wird.

    Wurzel

    Die meisten Xerophyten haben ein verzweigtes und tiefes Wurzelsystem, damit sie an das Grundwasser in den unteren Bodenschichten gelangen.

    Bei Kakteen ist das jedoch umgekehrt, sie besitzen ein flaches ausgedehntes Wurzelsystem nahe der Oberfläche, um während einer Regenperiode möglichst schnell und viel Wasser aufnehmen können.

    Sprossachse

    Die Sprossachse ist bei Xerophyten, besonders bei den Sukkulenten, häufig für die Wasserspeicherung verantwortlich. Wenn die Blätter einer xeromorphen Pflanze komplett reduziert sind und somit keine Fotosynthese durchführen können, passiert diese in der Sprossachse. Zudem übernimmt die Sprossachse die Aufgabe zur Isolation vor Trockenheit und Hitze.

    Xerophyten Assimilation

    Xerophyten betreiben wie alle anderen grünen Pflanzen Fotosynthese. Dafür benötigen sie Sonnenlicht, Wasser und Kohlenstoffdioxid (CO2), um den Einfachzucker Glucose und Sauerstoff zu produzieren.

    Assimilation beschreibt den Aufbau eigener Körpersubstanz (Biomasse) aus körperfremden Stoffen. Bei Pflanzen geschieht die Assimilation über die Fotosynthese.

    Xerophyten betreiben verschiedene Arten der Fotosynthese. Dazu gehören die CAM-Fotosynthese und die C4-Fotosynthese.

    CAM-Fotosynthese

    Bei der CAM-Fotosynthese werden erst bei Nacht die Stomata geöffnet, um einen starken Wasserverlust tagsüber zu vermeiden. Die Pflanze nimmt somit über Nacht Kohlenstoffdioxid auf und speichert es in Form von Apfelsäure in ihren Vakuolen. Am nächsten Tag wird die Apfelsäure zu Kohlenstoffdioxid abgebaut und in den Calvin-Zyklus eingeführt, wobei Glucose produziert wird. Die dafür benötigte Energie in Form von ATP und NADPH+H+ stammt aus der Lichtreaktion am Tag. Zu den CAM-Pflanzen gehören hauptsächlich Sukkulenten.

    C4-Fotosynthese

    Bei der C4-Fotosynthese sind der Calvin-Zyklus und die CO2-Fixierung räumlich voneinander getrennt. In den Mesophyllzellen, also im Grundgewebe der Blätter, findet die CO2-Fixierung statt. In den Leitbündelscheiden wird durch den Calvin-Zyklus CO2 zu Glukose und Wasser reduziert.

    Xerophyt Beispiel

    Ein sehr eindrucksvolles Beispiel für einen Xerophyten ist die Pflanze Welwitschia mirabilis. Das einzige natürliche Vorkommen dieser Pflanze befindet sich in der Wüste von Namib, in der täglich extrem hohe Temperaturen, Trockenheit und Sandstürme herrschen. Seit ca. 80 Millionen Jahren gibt es diese Pflanze, die fast konkurrenzlos in der lebensfeindlichen Umgebung wächst.

    Das wenige Wasser, welches sie zum Überleben benötigen, nehmen sie entweder durch den morgendlichen Nebel oder durch tief liegende Grundwasservorkommen auf. Um diese zu erreichen, haben sie lange Pfahlwurzeln. Damit die Blätter durch die starke Sonneneinstrahlung nicht überhitzen, bildet die Welwitschia einen roten Blattfarbstoff, der wie ein Sonnenschutz wirkt. Bei geringerer Sonneneinstrahlung und Hitze stellen sie wieder ihren grünen Blattfarbstoff (Chlorophyll) her.

    Xerophyten - Das Wichtigste

    • Xerophyten, auch Trockenpflanzen genannt, sind gut an Standorte mit Wasserknappheit angepasst.
    • Sie kommen in ariden und semiariden Klimazonen, an sehr kalten Orten wie Tundren, oder auf Böden, die das Wasser nicht gut halten können, vor.
    • Xerophyten wurden 1992 in verschiedene systematische Gruppen eingeteilt:
      • Drought escaping

      • Drought resisting

        • Drought evading

        • Drought enduring

    • Durch Sukkulenz können Xerophyten interne Wasserspeicher in fleischigen Geweben errichten.
      • Durch die extremen Umweltbedingungen, in denen die Pflanzen vorkommen, haben sich einige Anpassungen entwickelt:

        • Blätter

          • Wenige und kleine Blätter

          • Eingesenkte Stomata

          • Haare (Trichome) zum Transpirationsschutz

          • Rollblätter

          • Dicke Kutikula

          • Doppeltes Palisadengewebe

        • Wurzel

          • Tiefes, verzweigtes Wurzelnetz, um Grundwasser zu erreichen

          • Bei Sukkulenten flaches, verzweigtes Wurzelnetz, um bei Regen Wasser aufzunehmen

        • Sprossachse

          • Wasserspeicherung

          • Fotosynthese

          • Isolation vor Trockenheit und Hitze

        • Assimilation

          • CAM-Fotosynthese: zeitliche Trennung von CO₂-Fixierung und Calvin-Zyklus

          • C4-Fotosynthese: räumliche Trennung von CO₂-Fixierung und Calvin-Zyklus


    Nachweise

    1. Sadava et al. (2019). Purves Biologie. Springer Spektrum
    2. Nentwig et al. (2017). Ökologie kompakt. Springer Spektrum
    3. Kadereit et al. (2021). Strasburger-Lehrbuch der Pflanzenwissenschaft. Springer Spektrum
    4. Abb. 1: "Desierto florido" (https://commons.wikimedia.org/wiki/File:Desierto_florido.jpg) von B1mbo (https://commons.wikimedia.org/wiki/User:B1mbo) ist lizenziert unter CC BY-SA 2.0 (https://creativecommons.org/licenses/by-sa/2.0/deed.en).
    Xerophyten Xerophyten
    Lerne mit 14 Xerophyten Karteikarten in der kostenlosen StudySmarter App

    Wir haben 14,000 Karteikarten über dynamische Landschaften.

    Mit E-Mail registrieren

    Du hast bereits ein Konto? Anmelden

    Häufig gestellte Fragen zum Thema Xerophyten

    Sind Sukkulenten Xerophyten?

    Sukkulenten sind Xerophyten. Genauer gesagt können sie in die Kategorie "drought enduring" (Trockenheit aushaltend) eingeteilt werden. 

    Wie sind Xerophyten an ihren Standort angepasst?

    Xerophyten sind an ihren Standort angepasst, indem sie mit verschiedenen Mitteln versuchen, die Transpiration und damit den Wasserverlust der Pflanze möglichst gering zu halten. Dazu gehören unter anderem:

    • wenige und kleine Blätter
    • eingesenkte Stomata
    • Rollblätter
    • dicke Kutikula
    • doppeltes Palisadengewebe
    • tief reichendes und verzweigtes Wurzelsystem
    • CAM-Fotosynthese
    • C4-Fotosynthese 

    Wieso gibt es bei Xerophyten mehr Spaltöffnungen als bei Hydrophyten?

    Bei Xerophyten gibt es mehr Spaltöffnungen, als bei Hydrophyten, weil die Xerophyten ihre Spaltöffnungen nur in der Nacht öffnen. Wenn sie ihre Stomata öffnen, müssen sie innerhalb der Nacht den gesamten Stoffaustausch durchführen. Dabei sind viele Spaltöffnungen von Vorteil.

    Welche Besonderheiten zeigt der Blattquerschnitt einer Trockenpflanze?

    Der Blattquerschnitt einer Trockenpflanze ist besonders, weil das Blatt an besonders trockene Orte angepasst ist. Es besitzt eine dicke Kutikula, ein doppeltes Palisadengewebe und eingesenkte Stomata mit Haaren. 

    Entdecken Lernmaterialien mit der kostenlosen StudySmarter App

    Kostenlos anmelden
    1
    Über StudySmarter

    StudySmarter ist ein weltweit anerkanntes Bildungstechnologie-Unternehmen, das eine ganzheitliche Lernplattform für Schüler und Studenten aller Altersstufen und Bildungsniveaus bietet. Unsere Plattform unterstützt das Lernen in einer breiten Palette von Fächern, einschließlich MINT, Sozialwissenschaften und Sprachen, und hilft den Schülern auch, weltweit verschiedene Tests und Prüfungen wie GCSE, A Level, SAT, ACT, Abitur und mehr erfolgreich zu meistern. Wir bieten eine umfangreiche Bibliothek von Lernmaterialien, einschließlich interaktiver Karteikarten, umfassender Lehrbuchlösungen und detaillierter Erklärungen. Die fortschrittliche Technologie und Werkzeuge, die wir zur Verfügung stellen, helfen Schülern, ihre eigenen Lernmaterialien zu erstellen. Die Inhalte von StudySmarter sind nicht nur von Experten geprüft, sondern werden auch regelmäßig aktualisiert, um Genauigkeit und Relevanz zu gewährleisten.

    Erfahre mehr
    StudySmarter Redaktionsteam

    Team Biologie Lehrer

    • 10 Minuten Lesezeit
    • Geprüft vom StudySmarter Redaktionsteam
    Erklärung speichern Erklärung speichern

    Lerne jederzeit. Lerne überall. Auf allen Geräten.

    Kostenfrei loslegen

    Melde dich an für Notizen & Bearbeitung. 100% for free.

    Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!

    Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.

    • Karteikarten & Quizze
    • KI-Lernassistent
    • Lernplaner
    • Probeklausuren
    • Intelligente Notizen
    Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!
    Mit E-Mail registrieren

    Alle Inhalte freischalten mit einem kostenlosen StudySmarter-Account.

    • Sofortiger Zugriff auf Millionen von Lernmaterialien.
    • Karteikarten, Notizen, Übungsprüfungen, AI-tools und mehr.
    • Alles, was du brauchst, um bei deinen Prüfungen zu bestehen.
    Second Popup Banner