Sonnenblatt Schattenblatt

Ausgangspunkt für den unterschiedlichen Aufbau der Sonnen- und Schattenblätter ist die vorhandene Intensität von Licht. Mit ihren Sonnen- und Schattenblättern haben sich Pflanzen an die unterschiedlich gegebenen Lichtbedingungen angepasst. 

Los geht’s Leg kostenfrei los
Sonnenblatt Schattenblatt Sonnenblatt Schattenblatt

Erstelle Lernmaterialien über Sonnenblatt Schattenblatt mit unserer kostenlosen Lern-App!

  • Sofortiger Zugriff auf Millionen von Lernmaterialien
  • Karteikarten, Notizen, Übungsprüfungen und mehr
  • Alles, was du brauchst, um bei deinen Prüfungen zu glänzen
Kostenlos anmelden

Lerne mit Millionen geteilten Karteikarten

Leg kostenfrei los

Wandle deine Dokumente mit AI in Karteikarten um

Inhaltsverzeichnis
Inhaltsangabe

    Sonnenblatt und Schattenblatt: Definition

    Das Sonnenblatt kann auch als „Lichtblatt“ bezeichnet werden, da es an eine lichtreiche Umgebung angepasst ist. Das Sonnenblatt ist im Vergleich zum Schattenblatt kleiner und dicker. Sonnenblätter befinden sich bei einem Laubbaum im äußeren Teil der Krone oder aber auch auf der sonnenzugewandten Seite.

    Das Schattenblatt ist an eine lichtarme Umgebung angepasst. Es ist größer und dünner als das Sonnenblatt, um die ungünstigen Lichtverhältnisse ausgleichen zu können. Bei einem Laubbaum befinden sich die Schattenblätter im inneren Teil der Krone oder an der sonnenabgewandten Seite.

    Unterschiede zwischen Sonnenblatt und Schattenblatt

    Blätter, die viel Sonnenlicht ausgesetzt sind, müssen sich vor dem Austrocknen schützen. Schattenblätter müssen im Gegensatz dazu um jeden Lichtstrahl ringen. Hierzu erfährst Du in diesem Abschnitt, welche Unterschiede sie in Form und Aufbau aufweisen.

    Sonnenblätter schützen sich durch eine dicke Cuticula, verdickte Zellwände der Epidermis, sowie auf der Unterseite befindlichen Stomata vor zu hoher Transpiration. Weitere Merkmale der Sonnenblätter sind ein dicker Blattquerschnitt, ihr ausgeprägtes Palisadengewebe mit wenig Interzellularen und die große Anzahl an Chloroplasten.

    Transpiration ist der Vorgang, bei dem Wasser über die Blätter verdunstet wird. Dies geschieht über die regulierbaren Spaltöffnungen – den sogenannten Stomata. Es kann aber auch über die gesamte Blattoberfläche Wasser verdunsten. Bei diesem Vorgang spricht man von einer cuticulären Transpiration. Die Cuticula dient eigentlich als Schutz vor Wasserverlust, es kann aber trotzdem etwas Wasser über sie entweichen.

    Schattenblätter dagegen zeichnen sich durch eine dünne Cuticula, einem dünnen Querschnitt und einem einschichtigen Palisadengewebe aus, da hier eine geringere Eindringtiefe des Lichts besteht. Dafür besitzen sie aber ein ausgeprägtes Schwammgewebe mit großen Interzellularen, um einen verbesserten Gaswechsel ausführen zu können.

    Sonnenblatt und Schattenblatt: Vergleichstabelle

    Da das nur ein Ausschnitt an wichtigen Unterschieden waren, werden Dir nun über folgende Tabelle alle Unterschiede kompakt aufgezeigt:

    SonnenblattSchattenblatt
    Blattgrößekleingroß
    Cuticuladickdünn
    Stomatavielewenige
    Palisadengewebestark ausgeprägtwenig ausgeprägt
    Schwammgewebestark ausgeprägtwenig ausgeprägt
    Epidermisdick (ein- bis mehrschichtig)Dünn (einschichtig)
    Interzellulareenggroß
    Chloroplastenvielewenige
    Gasaustauschhochniedrig
    Lichtkompensationspunktspätfrüh
    Lichtsättigungspunktspätfrüh

    Der Lichtkompensationspunkt beim Sonnenblatt und beim Schattenblatt

    Mit dem Lichtkompensationspunkt ist der Punkt gemeint, an welchem die Kohlenstoffdioxidabgabe bzw. -aufnahme je nach Beleuchtungsstärke gleich hoch ist. Dabei erreichen Sonnenblätter erst später als Schattenblätter ihren Lichtkompensationspunkt. Schattenpflanzen können schon bei geringer Beleuchtungsstärke eine Kohlendioxid-Nettofixierung vorweisen. Ab diesem Punkt ist es ihnen möglich, Kohlenhydrate aufzubauen.

    Der Lichtkompensationspunkt wird dann erreicht, wenn die Menge des durch den Calvin-Zyklus fixierten CO₂ und das über die Atmung ausgeschiedene CO₂ gleich sind. Das ist gleichzeitig der Punkt, an dem die Pflanze in der Lage ist, Kohlenhydrate aufzubauen.

    Fotosyntheseleistung im Kontext des Lichtsättigungspunktes

    Der Lichtsättigungspunkt wird dann erreicht, wenn die maximale Fotosyntheseaktivität geleistet wird. Bei Sonnenblättern tritt auch hier deutlich später der Lichtsättigungspunkt ein als bei den Schattenblättern. Das liegt daran, dass Sonnenblätter mehr Chloroplasten besitzen, mit denen sie dann auch entsprechend mehr Fotosynthese betreiben können.

    Einfach ausgedrückt bedeutet das: Der Lichtsättigungspunkt ist dann erreicht, wenn die Fotosyntheserate nicht mehr steigen kann.

    Farbe von Sonnenblättern und Schattenblättern

    Sonnenblätter erscheinen dunkelgrün, während Schattenblätter hellgrün sind. Das liegt daran, dass Sonnenblätter im Gegensatz zu Schattenblättern viele Chloroplasten besitzen. In den Chloroplasten wiederum befindet sich das Chlorophyll, das die Blätter grün erscheinen lässt.

    Sonnenblatt und Schattenblatt : Aufbau und Funktion

    Der Aufbau von Sonnenblatt und Schattenblatt ist nicht zufällig unterschiedlich. Alle Zellorganellen besitzen andere Aufgaben, weshalb Du nun aufgezeigt bekommst, welche Funktionen sie in den jeweiligen Blattarten besitzen:

    Stomata (Spaltöffnungen)

    Sonnenblätter besitzen insgesamt mehr Spaltöffnungen, da sie mehr Licht zur Verfügung haben und mehr Fotosynthese betreiben. Dazu benötigen sie mehr Kohlenstoffdioxid (CO₂) und geben nach der Fotosynthese auch mehr Sauerstoff (O₂) ab. Die Gase gelangen über die Stomata in die Blätter und auch wieder aus den Blättern hinaus. Sie regulieren unter anderem, wie viel Gase passieren können.

    Transpiration

    Stomata dienen nicht nur zum Gasaustausch, sondern sind auch für die Transpiration zuständig. Die Transpiration ist der Vorgang, bei dem Wasser über die Stomata verdunsten kann. Sie hat zwei Funktionen. Durch die Wasserverdunstung entsteht einmal ein Sog, wodurch Wasser automatisch aus dem Boden bis in die Blätter der Pflanze fließt. Zusätzlich ist sie für eine kühlende Wirkung zuständig, was in diesem Fall der Grund für die höhere Anzahl der Stomata bei den Sonnenblättern ist.

    Die Transpiration schützt die Blätter vor einer Überhitzung durch die Sonneneinstrahlung!

    Palisadengewebe

    Das Palisadengewebe (Palisadenparenchym) befindet sich unter der oberen Epidermis im Blatt. Hier findet am meisten Photosynthese statt, da das Palisadengewebe reich an Chloroplasten ist.

    Sonnenblätter besitzen vorwiegend ein mehrschichtiges Palisadengewebe, da sie dadurch mehr Platz für die Chloroplasten haben. Um ihren hohen Lichtkompensationspunkt zu erreichen, ist bei ihnen mehr Fotosynthese nötig, die durch Chloroplasten erst zustande kommen kann.

    Der Nachteil ist, dass sie deshalb gewissermaßen auf das Sonnenlicht angewiesen sind, da sie ansonsten nie genug Energie (Kohlenhydrate) gewinnen würden.

    Bei Schattenblättern ist es daher umgekehrt: sie besitzen hierfür nur ein einschichtiges Palisadengewebe. Daraus resultiert, dass sie weniger Chloroplasten besitzen. Ihren Lichtkompensationspunkt können sie dadurch schon früher erreichen und deshalb bereits ab einem früheren Punkt Energie (Kohlenhydrate) gewinnen. Durch ihre vergrößerte Blattoberfläche steigt die Wahrscheinlichkeit ein paar Lichtstrahlen einfangen zu können.

    Epidermis

    Die Epidermis ist das Abschlussgewebe und damit die letzte Schicht unter der Cuticula. Bei den Sonnenblättern ist die Epidermis stärker ausgeprägt und damit dicker als bei den Schattenblättern. Grund hierfür ist die höhere Sonneneinstrahlung: da Wasser auch über die Cuticula verdunsten (= transpirieren) kann, soll der Prozess über die Epidermis gebremst werden und die Blätter verlieren insgesamt weniger Wasser.

    Wenn Blätter über ihre Stomata Wasser verdunsten, kann die Transpiration durch die Schließzellen reguliert stattfinden. Wenn Wasser über die Epidermis und letztlich auch über die Cuticula verloren geht, kann die Pflanze die Transpiration nicht steuern. Das würde bedeuten, dass auch in ungünstigen Momenten Wasser verloren gehen kann, wenn die Blätter z. B. keine so starke Kühlung benötigen.

    Bei Schattenblätter ist die Epidermis dünner, da hierdurch gewährleistet werden kann, dass die wenigen Sonnenstrahlen auch gut in die Blätter bis zu den Chloroplasten eindringen können. Dadurch kann das Defizit an Lichtstrahlen ausgeglichen werden.

    Cuticula

    In Anlehnung zur Epidermis besitzen Sonnenblätter auch eine dicke Cuticula. Sie ist die äußerste, wachsartige Schicht von Blättern. Du kannst sie Dir auch als eine Art Sonnenschutz vorstellen, da sie verhindert, dass zu viel Wasser verloren geht. Wie bei der Epidermis besitzen Schattenblätter auch hier eine dünnere Cuticula, damit die wenigen Sonnenstrahlen auch gut in das Blattinnere eindringen können.

    Sonnenpflanzen und Schattenpflanzen

    Die Sonnenblätter und Schattenblätter können außerdem noch die jeweiligen Pflanzenarten zugeordnet werden: den Sonnenpflanzen und den Schattenpflanzen. Sonnenpflanzen wachsen an warmen und lichtintensiven Orten. Schattenpflanzen dagegen können an kühleren und lichtärmeren Regionen wachsen. Grund dafür sind ihre unterschiedlichen Anpassungsstrategien. Eine der Anpassungsstrategien ist die Vielfalt ihrer Blattarten. Eine weitere Anpassungsstrategie ist an ihrem Wurzelsystem zu erkennen.

    Wenn Du mehr über Sonnen- und Schattenpflanzen erfahren möchtest, dann lies Dir doch gerne den Artikel zu Lichtpflanzen und Schattenpflanzen durch!

    Sonnenpflanzen besitzen ein weitverzweigtes und bis tief in die Erde ragendes Wurzelsystem. Sie können deshalb auch als Tiefwurzler bezeichnet werden. Da sie durch die höhere Sonneneinstrahlung mehr Wasser aufgrund ihrer höheren Fotosyntheserate benötigen, müssen sie entsprechend an genügend Wasser herankommen.

    Entsprechend weniger ausgeprägt ist das Wurzelsystem der Schattenpflanzen. Sie werden auch als Flachwurzler bezeichnet, da sich ihre Wurzeln nur in den oberen Bodenschichten ausbreiten.

    Diagramm zur Veranschaulichung der Fotosyntheserate

    Dir werden nun Beispiele aufgezeigt und in einem Diagramm dargestellt, wo die Lichtkompensationspunkte liegen können und an welcher Stelle die jeweilige Lichtsättigung eintritt.

    Eine Rotbuche hat bereits bei 1,2 % der insgesamt möglichen Sonneneinstrahlung ihren Lichtkompensationspunkt erreicht. Im Diagramm der Abbildung 1 ist es der Punkt, an dem die Linie auf der Nullstelle auftrifft. Einfach ausgedrückt bedeutet das, dass sie schon mit wenig CO₂ für die Fotosynthese fixieren kann. Damit ist ihr Überleben bei niedriger Sonneneinstrahlung gesichert.

    Fichten dagegen erreichen ihren Lichtkompensationspunkt bei 3 % der insgesamt möglichen Sonneneinstrahlung. Die Lichtsättigung ist höher als die bei den Rotbuchen, da sie insgesamt so aufgebaut sind, dass sie mehr Fotosynthese leisten können. Der Nachteil ist, dass sie aber auch, auf mehr Sonnenlicht angewiesen, sind als die Rotbuchen, da sie erst bei einer höheren Lichtintensität CO₂ fixieren können.

    Sonnenblatt Schattenblatt – Das Wichtigste

    • Pflanzen haben sich mithilfe von Sonnen- und Schattenblättern an die unterschiedlich gegebenen Lichtbedingungen angepasst.
    • Das Sonnenblatt ist an eine lichtreiche Umgebung angepasst.
    • Das Schattenblatt ist an eine lichtarme Umgebung angepasst.
    • Sonnenblätter schützen sich durch eine dicke Cuticula, verdickte Epidermis, sowie auf der Unterseite befindlichen Stomata vor zu hoher Transpiration.
    • Schattenblätter dagegen zeichnen sich unter anderem durch eine dünne Cuticula, einem dünnen Querschnitt und einem einschichtigen Palisadengewebe aus, da hier eine geringere Eindringtiefe des Lichts besteht.
    • Sonnenblätter erreichen erst später als Schattenblätter ihren Lichtkompensationspunkt.
    • Bei Sonnenblättern tritt auch der Lichtsättigungspunkt deutlich später ein als bei den Schattenblättern
      • das liegt daran, dass Sonnenblätter mehr Chloroplasten besitzen, mit denen sie dann auch entsprechend mehr Fotosynthese betreiben können.
    • Sonnenblätter und Schattenblätter können außerdem noch jeweiligen Pflanzenarten zugeordnet werden: den Sonnenpflanzen und Schattenpflanzen.
      • Sonnenpflanzen wachsen an warmen und lichtintensiven Orten.
      • Schattenpflanzen dagegen können an kühleren und lichtärmeren Regionen wachsen.

    Nachweise

    1. Prof. Dr. Frank Thomas (2018). Grundzüge der Pflanzenökologie. Springer Spektrum Berlin, Heidelberg.
    2. Christiane Wittmann (2005). CO2-Refixierung im Cortex von Laubbäumen und ihre Beeinflussung durch abiotische Umweltfaktoren. Universität Duisburg-Essen.
    3. Johannes Meister (2018). Mathematisierungen im Biologieunterricht. Springer Spektrum, Wiesbaden.
    Sonnenblatt Schattenblatt Sonnenblatt Schattenblatt
    Lerne mit 14 Sonnenblatt Schattenblatt Karteikarten in der kostenlosen StudySmarter App

    Wir haben 14,000 Karteikarten über dynamische Landschaften.

    Mit E-Mail registrieren

    Du hast bereits ein Konto? Anmelden

    Häufig gestellte Fragen zum Thema Sonnenblatt Schattenblatt

    Was ist der Unterschied zwischen Sonnenblatt und Schattenblatt?

    Der Unterschied liegt hauptsächlich bei den jeweiligen Anpassungsstrategien der Blätter. Sonnenblätter sind im Gegensatz zu Schattenblättern viel Sonnenlicht ausgesetzt und müssen sich vor dem Austrocknen schützen. Schattenblätter dagegen müssen um jeden Lichtstrahl ringen.

    Welchen Vorteil hat ein niedriger Lichtkompensationspunkt für eine Pflanze?

    Bei einem niedrigeren Lichtkompensationspunkt ist es der Pflanze bereits bei niedriger Sonneneinstrahlung möglich Kohlenhydrate aufzubauen. Mit dem Lichtkompensationspunkt ist der Punkt gemeint, an welchem die Kohlenstoffdioxidabgabe bzw. -aufnahme je nach Lichtintensität gleich hoch ist.  

    Warum werden Sonnenblätter abgeworfen?

    Sonnenblätter werden dann abgeworfen, wenn sie über einen längeren Zeitraum wenig Licht abbekommen haben. Sie sind dann ressourcenverschwendend für die Pflanzen, da sie durch die Sonnenblätter unnötig viel Wasser und CO2 verlieren. Außerdem können Sonnenblätter erst bei hoher Lichteinstrahlung Fotosynthese betreiben. Das bedeutet für die Pflanze, dass er durch sie keine Energie gewinnen kann.

    Warum ist das Sonnenblatt kleiner als das Schattenblatt?

    Da das Sonnenblatt sowieso genügend Licht abbekommt, benötigt es auch keine große Oberfläche, um die Strahlen für die Fotosynthese einzufangen. Durch eine vergrößerte Blattoberfläche bei den Schattenblättern steigt die Wahrscheinlichkeit wenigstens ein paar Lichtstrahlen einfangen zu können.

    Entdecken Lernmaterialien mit der kostenlosen StudySmarter App

    Kostenlos anmelden
    1
    Über StudySmarter

    StudySmarter ist ein weltweit anerkanntes Bildungstechnologie-Unternehmen, das eine ganzheitliche Lernplattform für Schüler und Studenten aller Altersstufen und Bildungsniveaus bietet. Unsere Plattform unterstützt das Lernen in einer breiten Palette von Fächern, einschließlich MINT, Sozialwissenschaften und Sprachen, und hilft den Schülern auch, weltweit verschiedene Tests und Prüfungen wie GCSE, A Level, SAT, ACT, Abitur und mehr erfolgreich zu meistern. Wir bieten eine umfangreiche Bibliothek von Lernmaterialien, einschließlich interaktiver Karteikarten, umfassender Lehrbuchlösungen und detaillierter Erklärungen. Die fortschrittliche Technologie und Werkzeuge, die wir zur Verfügung stellen, helfen Schülern, ihre eigenen Lernmaterialien zu erstellen. Die Inhalte von StudySmarter sind nicht nur von Experten geprüft, sondern werden auch regelmäßig aktualisiert, um Genauigkeit und Relevanz zu gewährleisten.

    Erfahre mehr
    StudySmarter Redaktionsteam

    Team Biologie Lehrer

    • 10 Minuten Lesezeit
    • Geprüft vom StudySmarter Redaktionsteam
    Erklärung speichern Erklärung speichern

    Lerne jederzeit. Lerne überall. Auf allen Geräten.

    Kostenfrei loslegen

    Melde dich an für Notizen & Bearbeitung. 100% for free.

    Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!

    Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.

    • Karteikarten & Quizze
    • KI-Lernassistent
    • Lernplaner
    • Probeklausuren
    • Intelligente Notizen
    Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!
    Mit E-Mail registrieren

    Alle Inhalte freischalten mit einem kostenlosen StudySmarter-Account.

    • Sofortiger Zugriff auf Millionen von Lernmaterialien.
    • Karteikarten, Notizen, Übungsprüfungen, AI-tools und mehr.
    • Alles, was du brauchst, um bei deinen Prüfungen zu bestehen.
    Second Popup Banner