StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
Americas
Europe
Du findest die Naturgesetze, die Schwingungen in der Physik erklären, faszinierend und möchtest mehr darüber erfahren? In diesem klar strukturierten Artikel wirst du eine umfassende Einführung in das Thema "Schwingungen Physik" erhalten, angefangen bei den Grundbegriffen und Arten von Schwingungen, über spezielle Themen wie mechanische und harmonische Schwingungen, bis hin zu der Verbindung von Schwingungen und Wellen. Abschließend kannst du dein erworbenes Wissen mit Übungsaufgaben zu Schwingungen Physik prüfen und vertiefen. Durch die wissenschaftliche, gleichzeitig aber leicht verständliche Darstellung, ist der Artikel sowohl für Schüler als auch für jeden interessierten Leser geeignet.
Entdecke über 50 Millionen kostenlose Lernmaterialien in unserer App.
Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmeldenDu findest die Naturgesetze, die Schwingungen in der Physik erklären, faszinierend und möchtest mehr darüber erfahren? In diesem klar strukturierten Artikel wirst du eine umfassende Einführung in das Thema "Schwingungen Physik" erhalten, angefangen bei den Grundbegriffen und Arten von Schwingungen, über spezielle Themen wie mechanische und harmonische Schwingungen, bis hin zu der Verbindung von Schwingungen und Wellen. Abschließend kannst du dein erworbenes Wissen mit Übungsaufgaben zu Schwingungen Physik prüfen und vertiefen. Durch die wissenschaftliche, gleichzeitig aber leicht verständliche Darstellung, ist der Artikel sowohl für Schüler als auch für jeden interessierten Leser geeignet.
In der Physik wird eine Schwingung als eine zeitlich periodische Bewegung um einen bestimmten Mittelwert, den Ruhemittelpunkt, definiert. Dies bedeutet, dass die Bewegung in zeitlichen Intervallen wiederholt wird. Dabei wechselt das System immer zwischen zwei extremen Zuständen.
Freie Schwingungen | Erzwungene Schwingungen |
Sie finden ohne äußerliche Einflüsse statt. Dabei handelt es sich beispielsweise um die Schwingung einer Feder oder die Pendelbewegung eines Pendels. | Bei diesen Schwingungen übt eine externe Kraft eine periodische Wirkung auf das System aus, dies kann zum Beispiel durch den Luftdruck bei einem Lautsprecher vorkommen. |
Ein gutes Beispiel für eine physikalische Schwingung ist das Pendeln einer Pendeluhr. Wenn du die Pendeluhr anschiebst, führt sie eine periodische Bewegung um ihren Ruhemittelpunkt aus, dies ist die freie Schwingung. Das Pendel schwingt mit einer bestimmten Frequenz und Amplitude, die durch die Länge des Pendels und die Gravitation beeinflusst wird.
Beim Analysieren realer Beispiele von Schwingungen in der Physik ist es wichtig, die oben genannten Grundbegriffe zu berücksichtigen. Die Messung oder Berechnung von Amplitude, Frequenz, Periode und Phase hilft dabei, die spezifischen Charakteristiken der Schwingungen zu verstehen.
Nehmen wir das Beispiel einer Harmonischen Schwingung. Bei dieser Bewegungsform handelt es sich um eine periodische Bewegung, bei welcher die Rückstellkraft proportional zur Auslenkung, aber entgegengesetzt gerichtet ist. Der Verlauf ist sinusförmig. Ein typisches Beispiel hierfür ist das ideale Federpendel oder das Fadenpendel (unter der Annahme kleiner Winkel). Die Bewegungsgleichung lautet \(x(t) = A \cos(\omega t + \phi)\). Dabei stellt \(x(t)\) die Auslenkung in Abhängigkeit von der Zeit dar, \(A\) die Amplitude, \(\omega\) die Kreisfrequenz und \(\phi\) die Anfangsphase.
In der Physik kommt man um Schwingungen nicht herum. Sie sind ein essentieller Bestandteil und finden Anwendung in vielen Bereichen, wie beispielsweise Optik, Akustik und Elektrotechnik. Sie liefern einen spannenden Einblick in die Welt der Physik und können, richtig verstanden, viele Phänomene in Natur und Technik erklären.
Mechanische Schwingungen sind Bewegungen, die sich regelmäßig wiederholen, um einen Gleichgewichtszustand oder eine Mittellage. Sie treten in vielen alltäglichen Systemen auf, wie zum Beispiel in einer schwingenden Saite oder in der Federaufhängung eines Autos. Charakteristisch für mechanische Schwingungen ist die schwingfähige Masse und eine rückstellende Kraft, die die ausgelenkte Masse wieder in die Mittellage zurückführt.
Mechanische Schwingungen sind universell in der Physik und haben die komplexesten Formen von Schwingungen zur Folge. Sie tragen dazu bei, die internen Vorgänge in einer Vielzahl von Systemen, von den kleinsten subatomaren Partikeln bis hin zu den größten Strukturen im Universum, zu verstehen und zu kontrollieren.
Wenn wir eine Feder an einem Ende festhalten und das andere Ende strecken und dann loslassen, sehen wir, dass das gestreckte Ende zu schwingen beginnt. Dies liegt daran, dass die Feder versucht, ihre ursprüngliche Form wiederherzustellen. In diesem Fall dient die Feder selbst als die rückstellende Kraft, und die resultierende Bewegung ist eine Harmonische Schwingung. Der Verlauf dieser Schwingung ist sinusförmig, und die Rückstellkraft ist proportional zur Auslenkung.
Wenn wir ein solches Pendel in Bewegung setzen, indem wir es aus seiner Ruhelage auslenken und loslassen, schwingt die Masse hin und her. auch hier handelt es sich um eine Harmonische Schwingung. Allerdings ist die Bewegung hier nicht genau sinusförmig, sondern genauer gesagt eine Näherung, die für kleine Auslenkungen gilt.
Zunächst einmal wird eine harmonische Schwingung durch ihre Amplitude gekennzeichnet, das ist die maximale Auslenkung vom Ruhemittelpunkt. Die Frequenz gibt an, wie oft die Schwingung in einer Sekunde geschieht. Die Periode ist die Zeit für eine vollständige Schwingung. Die Phasenverschiebung gibt an, um wie viel die Schwingung gegenüber einer Referenzschwingung verschoben ist.
Zum Beispiel beschreibt die Bewegung eines Pendels eine harmonische Schwingung, sofern die Auslenkung klein ist. Auch die Bewegung einer auf einer horizontalen, reibungsfreien Oberfläche angebrachten Masse, die mit einer Feder verbunden ist, folgt einer harmonischen Schwingung. Und selbst die Schwingung eines Lautsprechers, die Schallwellen erzeugt, kann als harmonische Schwingung betrachtet werden.
Eine besondere Form der harmonischen Schwingung ist die Schwebung. Dies ist ein Phänomen, das auftritt, wenn zwei Schwingungen mit nur leicht unterschiedlichen Frequenzen überlagert werden. Das Resultat ist eine neue Schwingung, die eine niedrigere Frequenz hat als die beiden ursprünglichen Schwingungen. Diese sogenannte Schwebungsfrequenz entspricht der Differenz der beiden ursprünglichen Frequenzen und ist oft deutlich wahrnehmbar.
Wellenart | Beispiel |
Mechanische Wellen | Seismische Wellen (Erdbebenwellen) |
Elektromagnetische Wellen | Lichtwellen, Radiowellen, Mikrowellen |
Materiewellen | Teilchenwellen, wie Elektronenwellen |
Karteikarten in Schwingungen Physik43
Lerne jetztWas ist eine mechanische Schwingung?
Eine mechanische Schwingung ist eine Schwingung, bei der sich ein Körper regelmäßig um eine Gleichgewichtslage (Ruhelage) bewegt.
Wann ist eine mechanische Schwingung zudem harmonisch?
Eine mechanische Schwingung ist zudem harmonisch, wenn ihre Weg-Zeit-Funktion die Form einer Sinus-Funktion hat. Wenn sie keine Sinus-Funktion hat, ist sie aharmonisch.
Was entspricht der Bewegung eines harmonischen Schwingers (Oszillator)?
Der Bewegung eines harmonischen Schwingers (Oszillator) entspricht die Projektion einer gleichförmigen Kreisbewegung. Unter jener können wir uns die Bewegung eines Körpers auf einer Kreisbahn vorstellen, bei der in gleich langen Zeitabschnitten gleich lange Wegstrecken zurückgelegt werden.
Was gilt es bei der Bewegung eines harmonischen Oszillators zu wissen?
Es gilt zu wissen, dass bei der Bewegung eines harmonischen Oszillators der Betrag der Bahngeschwindigkeit gleich bleibt, nicht aber die Richtung.
Was entspricht dem Radius r , wenn die Projektion einer gleichförmigen Kreisbewegung der Bewegung eines harmonischen Schwingers entspricht?
Dem Radius r entspricht die Amplitude ymax, wenn die Projektion einer gleichförmigen Kreisbewegung der Bewegung eines harmonischen Schwingers entspricht.
Was entspricht der Umlaufdauer T, wenn die Projektion einer gleichförmigen Kreisbewegung der Bewegung eines harmonischen Schwingers entspricht?
Der Umlaufdauer T entspricht die Schwingungsdauer t, wenn die Projektion einer gleichförmigen Kreisbewegung der Bewegung eines harmonischen Schwingers entspricht.
Du hast bereits ein Konto? Anmelden
Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.
Melde dich an für Notizen & Bearbeitung. 100% for free.
Speichere Erklärungen in deinem persönlichen Bereich und greife jederzeit und überall auf sie zu!
Mit E-Mail registrieren Mit Apple registrierenDurch deine Registrierung stimmst du den AGBs und der Datenschutzerklärung von StudySmarter zu.
Du hast schon einen Account? Anmelden