Select your language

Suggested languages for you:
Log In Anmelden
StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free

Die All-in-one Lernapp:

  • Karteikarten
  • NotizenNotes
  • ErklärungenExplanations
  • Lernpläne
  • Übungen
App nutzen

Geradlinige Bewegung

Save Speichern
Print Drucken
Edit Bearbeiten
Melde dich an und nutze alle Funktionen. Jetzt anmelden
X
Illustration Du hast bereits eine Erklärung angesehen Melde dich kostenfrei an und greife auf diese und tausende Erklärungen zu
Physik

Geradlinige Bewegung

Dieser Artikel dreht sich um die geradlinige Bewegung. Was es damit auf sich hat, welche Begriffe und Formeln für dich wichtig sind und wie du diese in Beispielen anwendest erfährst du in diesem Artikel. Das Kapitel können wir der Mechanik und damit dem Fach Physik zuordnen.

Geradlinige Bewegung - Was ist das überhaupt?

Bevor wir uns mit den zugehörigen Formeln und Berechnungen auseinandersetzen, wiederholen wir zunächst, was es mit den Begriffen "Bewegung" und "geradlinig" auf sich hat.

Allgemeine Bewegung

Die Mechanik beschäftigt sich in zwei Teilgebieten mit der Lehre von Bewegungen:

  • Kinematik
  • Dynamik

Dabei beschreiben kinematische Vorgänge mechanische Bewegungen ohne den Einfluss von Kräften. In der Dynamik dagegen werden die Ursachen von Bewegungen unter Betrachtung einwirkender Kräfte mit berücksichtigt. Wir beschäftigen uns daher bei dem Thema der geradlinigen Bewegung mit der Kinematik.

Um die Begriffe Bewegung und Ruhe überhaupt definieren zu können, wird zunächst ein Bezugssystem benötigt. Als Beispiel ziehen wir daher vereinfacht einen Fahrradweg heran. Auf diesem Weg befinden sich zwei Personen auf Fahrrädern, wie in der nachfolgenden Abbildung zu sehen ist. Bei der physikalischen Beschreibung der mechanischen Bewegungen wird ein Körper (in unserem Beispiel die Personen) vereinfacht als einzelner Punkt angesehen, ein sogenannter Massenpunkt, dessen Masse und Abmessungen für die Beschreibung der Bewegung vernachlässigt werden können.

Abbildung 1: Personen in Ruhe und Bewegung

Ein in Ruhe befindlicher Körper (oder Massenpunkt) verändert seine Position über einen gewissen Zeitraum nicht. Die linke Person in der Abbildung steht mit dem Fahrrad noch an derselben Stelle und ist noch nicht losgefahren. Dementsprechend verändert sich bei einer Bewegung die Position des Körpers im entsprechenden Bezugssystem. Die rechte Person auf dem Fahrrad befindet sich also nicht mehr in Ruhe und fährt den Fahrradweg entlang.

Unser Beispiel zeigt damit eine eindimensionale Bewegung, bei der in einem Koordinatensystem allein die Koordinaten in horizontaler Richtung für die Positionsbeschreibung ausreichen. Ebenso sind Ortsveränderungen in mehreren Dimensionen möglich, daher müssen Bewegungen immer im abhängigen Bezugssystem betrachtet werden.

Abbildung 2: Bewegung in mehreren Dimensionen

Damit wäre bereits geklärt, wann sich ein Körper in Bewegung befindet. Aber was bedeutet nun eine geradlinige Bewegung?

Geradlinige Bewegung

Bewegen wir uns beispielsweise mit dem Fahrrad von einem gewissen Punkt A bis zu einem Punkt B, so legen wir dabei eine Strecke zurück. Diese Strecke oder Bahn kann dabei verschiedene Formen annehmen:

Abbildung 3: Bahnformen

Eine geradlinige bzw. lineare Bewegung, oder auch Translationsbewegung, ist dadurch gekennzeichnet, dass sich der Körper während der gesamten Bewegung auf einer geraden Bahnkurve bewegt. Im Gegensatz dazu steht die Kreisbewegung, bei der ein Körper entlang einer Kreisbahn rotiert, weshalb sie auch als Rotationsbewegung bezeichnet wird. Krummlinige Bahnformen stellen einen Sonderfall dar und können in einzelne geradlinige Abschnitte unterteilt werden.

Bei einer geradlinigen Bewegung legt ein Körper also auf einer geraden Bahn eine bestimmte Strecke zurück. Grundsätzlich muss dabei aber noch die Unterteilung der verschiedenen Bewegungsarten berücksichtigt werden.

Abbildung 4: Unterteilung geradlinige Bewegung

Ein Körper bewegt sich bei einer geradlinigen gleichförmigen Bewegung auf einer geraden Bahn mit einer konstanten Geschwindigkeit ohne zu beschleunigen. Entsprechend ist eine geradlinige ungleichförmige Bewegung dadurch gekennzeichnet, dass sich der Betrag der Geschwindigkeit des Körpers während der Bewegung verändert. Ein Beispiel dafür wäre der freie Fall. Mehr zu diesem Beispiel findest du im Kapitel gleichmäßig beschleunigte Bewegung. Wir wollen uns im weiteren Verlauf auf die geradlinige gleichförmige Bewegung beschränken.

Berechnung geradliniger gleichförmiger Bewegungen

Müssen wir nun eine geradlinige gleichförmige Bewegung beschreiben und berechnen, so sind einige wichtigen Kenngrößen notwendig. Diese wurden bereits im Kapitel Mechanik besprochen; wir werden die relevanten Informationen kurz anhand eines Beispiels wiederholen. Die nachfolgende Abbildung zeigt wieder eine Person auf dem Fahrrad, die eine bestimmte Strecke zurücklegen will. Dabei wird der Zeitraum gemessen, die die Person für das Abfahren des Wegs benötigt.

Abbildung 5: Zeitmessung bei einer Bewegung

Weiterhin wird die Gesamtstrecke in mehrere gleiche Teilstrecken zerlegt und ebenfalls die Zeiten gemessen. Durch die Angabe der geradlinigen gleichförmigen Bewegung zeigen sich bei der Messung der Zeiten für die einzelnen Teilstrecken keine Differenzen. Die Person legt also die gleich langen Strecken in den gleich langen Zeiträumen zurück. Dies bedeutet, dass sich die Person mit konstanter Geschwindigkeit bewegt, denn die mittlere Geschwindigkeit (Durchschnittgeschwindigkeit) v berechnet sich aus dem Quotient der zurückgelegten Strecke und den dafür benötigten Zeitraum .

Die Umrechnung von der Einheit in die Einheiterfolgt über die Multiplikation mit 3,6. Näheres dazu findest du in den Anwendungsbeispielen.

Für die Momentangeschwindigkeit zu einem bestimmten Zeitpunkt erhalten wir ebenfalls durch die Berechnung der nachfolgenden Gleichung.

Dies ist nichts anderes als die Ableitung der Strecke nach der Zeit. Gekennzeichnet wird die abgeleitete Komponente mit einem Punkt über dem Buchstaben. Näheres dazu findest du in separaten Kapiteln.

Durch Umstellen der Formeln erhalten wir für die Bewegung das Weg-Zeit-Gesetz:

Dieses Gesetz gilt jedoch nur für Bewegungen, die beim Start der Bewegung bei beginnen. Sobald der Körper zum Startzeitpunkt bereits eine Anfangsstrecke zurückgelegt hat, muss dies in der Formel berücksichtigt werden und es gilt:

Neben der Geschwindigkeit lässt sich noch die Beschleunigung als Kenngröße einer Bewegung nennen. Sie ist ein Maß für die Änderung der Geschwindigkeit mit der Zeit und berechnet sich aus dem Quotient der Geschwindigkeitänderung v und der benötigten Zeit t.

Zu einem bestimmten Zeitpunkt t lässt sich die ebenfalls die Momentanbeschleunigung ausrechnen und wir erhalten wieder durch Ableiten nach der Zeit:

Da wir bei einer geradlinigen gleichförmigen Bewegung keine Geschwindigskeitsänderung zu verzeichnen haben, ist die Beschleunigung in diesem Fall gleich null.

Damit haben wir bereits alle wichtigen Formeln für die Berechnung von Aufgaben zu geradlinigen gleichförmigen Bewegungen kennengelernt. Die Anwendung werden wir im weiteren Verlauf anhand von Beispielen üben. Zunächst beschäftigen wir uns noch mit der graphischen Darstellung der Kenngrößen.

Diagramme zur geradlinigen gleichförmigen Bewegung

In welchen Zusammenhang die verschiedenen Kenngrößen zueinander stehen, zeigt sich bereits durch die obigen Formeln. Zur besseren Veranschaulichung der Beziehung der einzelnen Größen werden oft Diagramme herangezogen. Dabei sind drei verschiedene Diagramme von Bedeutung.

Weg-Zeit-Diagramm (s-t-Diagramm)

Bei dem sogenannten Weg-Zeit-Diagramm werden die Werte gewisser Strecken s mit den zugehörigen Zeiten t in ein Diagramm eingezeichnet. Die x-Achse ist dabei die Zeitachse mit zugehöriger Einheit (zum Beispiel Sekunden) und über die y-Achse wird die Strecke s ebenfalls mit zugehöriger Einheit (zum Beispiel Meter) aufgetragen. Da durch die konstante Geschwindigkeit bei geradlinigen gleichförmigen Bewegungen eine direkte Proportionalität zwischen Strecke und Zeit herrscht, ist der entstehende Graph eine Gerade. Zu beachten ist dabei aber, ob eine Anfangsstrecke s0 vorliegt oder nicht. Dementsprechend beginnt die Gerade bei der Anfangsstrecke oder im Ursprung. Die nachfolgende Abbildung zeigt eine schematische Darstellung des Weg-Zeit-Diagramms einer geradlinigen gleichförmigen Bewegung.

Abbildung 6: Weg-Zeit-Diagramm

Geschwindigkeit-Zeit-Diagramm (v-t-Diagramm)

Neben dem Auftragen der Messwerte von Strecke und Zeit, können zudem die Werte der Geschwindigkeit mit den zugehörigen Zeitpunkten in einem Diagramm dargestellt werden. Da die Geschwindigkeit bei einer geradlinigen gleichförmigen Bewegung konstant ist, ändern sich die Geschwindigkeitswerte zu den verschiedenen Zeiten nicht und es entsteht ein Graph in Form einer horizontalen Linie. Ob eine Anfangsstrecke vorhanden ist oder nicht, ist für den Graph im Geschwindigkeit-Zeit-Diagramm nicht relevant.

Abbildung 7: Geschwindigkeit-Zeit-Diagramm

Beschleunigung-Zeit-Diagramm (a-t-Diagramm)

Auch im Beschleunigung-Zeit-Diagramm wird die Zeit als x-Achse aufgetragen. Die Beschleunigungswerte sind damit in der y-Achse aufzuzeichnen. Durch das Hintergrundwissen zu gleichförmigen Bewegungen wissen wir bereits, dass keine Geschwindigkeitsänderung während der Bewegung stattfindet und somit keine Beschleunigung herrscht. Dementsprechend ist der Graph im Diagramm eine waagrechte Linie auf der x-Achse. Die Beschleunigungswerte sind ebenfalls nicht davon betroffen, ob eine Anfangsstrecke vorliegt oder nicht.

Abbildung 8: Beschleunigung-Zeit-Diagramm

Zur Übung und Anwendung zeigen wir die nachfolgend noch zwei Beispielaufgaben. Du kannst dabei gerne versuchen diese schon selbstständig zu lösen. In den zugehörigen Karteikarten findest du bei Studysmarter noch weitere Anwendungsaufgaben zum Üben.

Anwendungsbeispiele

Alle Informationen und Formeln für die Berechnung der Anwendungsbeispiele findest du im Artikel.

Beispiel 1

Ein Familie fährt mit ihrem Kleinbus in den Urlaub. Dabei fahren sie zunächst zwei Stunden lang mit einer konstanten Geschwindigkeit von 80 km/h über eine Landstraße. Danach legen sie die restliche Strecke von 60 km auf der Autobahn mit einer Geschwindigkeit von 130 km/h zurück.

a) Welche Strecke legt die Familie auf der Landstraße zurück?

b) Wie viele Kilometer fahren sie insgesamt bis zu ihrem Ziel?

c) Wie lange brauchen sie für die Strecke auf der Autobahn?

Lösung:

a) Auf der Landstraße fahren sie zwei Stunden lang mit einer Geschwindigkeit von 80 km/h.

b) Bis zum Ziel fahren sie zunächst auf der Landstraße und dann auf der Autobahn.

c) Die Strecke auf der Autobahn beträgt 60 km und diese legen sie mit einer Geschwindigkeit von 130 km/h zurück.

Beispiel 2

Zwei Autos stehen auf einem Parkplatz. Beide wollen zum nächstgelegenen Supermarkt in 55 km. Das Auto 1 startet und fährt die Strecke mit einer konstanten Geschwindigkeit von 25 km/h. Etwa 30 Minuten später fährt auch das Auto 2 los und hat dabei eine Geschwindigkeit von 10 m/s. Die Länge der Autos ist zu vernachlässigen.

a) Wie lange benötigt das Auto 2 für die Strecke (ohne Startzeit)?

b) Treffen sich die beiden Autos während der Fahrt zum Supermarkt und wenn ja, nach welcher Strecke?

Lösung:

a) Das Auto 2 fährt mit einer Geschwindigkeit von 10 m/s eine Strecke von 55 km.

b) Wenn sich beide Autos treffen, haben sie dieselbe Strecke s zurückgelegt und dieselbe Zeit t gebraucht. Daher lassen sich zwei Gleichungen aufstellen. Dabei muss jedoch berücksichtigt werden, dass das Auto 2 erst nach einer halben Stunde losfährt.

Durch Gleichsetzen erhalten wir eine Lösung für t, die wir anschließend in eine der beiden Gleichungen für s einsetzen.

Bitte beachte, dass beim Einsetzen mit gerundeten Zahlen kleine Abweichungen auftreten können. Zudem wäre es auch möglich Aufgaben dieser Art graphisch anhand eines s-t-Diagramms zu lösen.

Damit haben wir alle wichtigen Grundlagen zu geradlinigen Bewegungen kennengelernt. Anschließend findest du noch eine kurze Übersicht mit den wichtigsten Informationen.

Geradlinige Bewegung - Alles Wichtige auf einen Blick

  • Ein Körper in Bewegung bedeutet eine Positionsveränderung des Körpers in einem Bezugssystem.
  • In der Mechanik wird ein Körper vereinfacht als Massepunkt dargestellt, dessen Abmaße für die Beschreibung der Bewegung vernachlässigbar sind.
  • Bewegungen können in mehreren Dimensionen betrachtet werden:
    • Eindimensional
    • Zweidimensional (Ebene)
    • Dreidimensional (Raum)
  • Anhand der Bahnformenlassen sich Bewegungen unterscheiden in:
    • Geradlinig (Translationsbewegung)
    • Krummlinig
    • Kreisförmig (Rotationsbewegung)
  • Eine geradlinige Bewegung lässt sich nochmal unterteilen:
    • geradlinig gleichförmig (v=konstant, a=0)
    • geradlinig ungleichförmig
  • Für die geradlinig gleichförmige Bewegung gelten folgende Formeln:
    • (ohne Anfangsstrecke)
    • (mit Anfangsstrecke)
  • Graphisch lassen sich die Beziehungen wie folgt darstellen:

Geradlinige Bewegung

Eine geradlinig gleichförmige Bewegung ist eine Bewegung, bei der sich ein Körper mit konstanter Geschwindigkeit auf einer geradlinigen Bahn bewegt.

Es wird bei den Bewegungsarten wie folgt unterschieden:

  • Gleichförmige Bewegung
  • Ungleichförmige Bewegung
    • Gleichmäßig beschleunigte Bewegung
    • Ungleichmäßig beschleunigte Bewegung

Eine gleichmäßig beschleunigte geradlinige Bewegung ist eine Bewegung mit einer geradlinigen Bahnkurve, bei der eine veränderliche Geschwindigkeit und eine konstante Beschleunigung herrscht.

Finales Geradlinige Bewegung Quiz

Frage

Was wird in der Mechanik im Teilgebiet Kinematik behandelt?

Antwort anzeigen

Antwort

Die Kinematik beschäftigt sich mit mechanischen Bewegungen ohne den Einfluss von Kräften zu berücksichtigen.

Frage anzeigen

Frage

Was ist ein sogenannter Massenpunkt?

Antwort anzeigen

Antwort

Körper werden in der Mechanik teilweise vereinfacht als einzelner Punkt, einem sogenannten Massenpunkt angesehen, dessen Masse und Abmaße für die Beschreibung von Bewegungen vernachlässigt werden können.

Frage anzeigen

Frage

Was bedeutet es, wenn sich ein Körper in Ruhe befindet?

Antwort anzeigen

Antwort

Ein in Ruhe befindlicher Körper verändert seine Position über einen gewissen Zeitraum in einem Bezugsystem nicht und hat dementsprechend keine Geschwindigkeit.

Frage anzeigen

Frage

Wann befindet sich ein Körper in Bewegung?

Antwort anzeigen

Antwort

Eine Bewegung des Körpers bedeutet eine Positionsveränderung im entsprechenden Bezugssystem in einem gewissen Zeitraum.

Frage anzeigen

Frage

Können Bewegungen mehrdimensional stattfinden?

Antwort anzeigen

Antwort

Ja, Bewegung können sowohl eindimensional, zweidimensional (in der Ebene) und dreidimensional (im Raum) stattfinden.

Frage anzeigen

Frage

Wann ist eine Bewegung geradlinig?

Antwort anzeigen

Antwort

Geradlinige Bewegungen sind dadurch gekennzeichnet, dass sich der Körper während der gesamten Bewegung auf einer geraden Bahn bewegt.

Frage anzeigen

Frage

Welche verschiedenen Bewegungsarten gibt es bei der geradlinige Bewegung?

Antwort anzeigen

Antwort

Geradlinige Bewegungen gibt es sowohl als geradlinige gleichförmige Bewegung und auch als geradlinige ungleichförmige Bewegung.

Frage anzeigen

Frage

Was kennzeichnet eine geradlinige gleichförmige Bewegung?

Antwort anzeigen

Antwort

Eine Körper bewegt sich bei einer geradlinigen gleichförmigen Bewegung mit konstanter Geschwindigkeit auf einer geraden Bahn.

Frage anzeigen

Frage

Welchen Wert hat die Beschleunigung bei einer geradlinigen gleichförmigen Bewegung?

Antwort anzeigen

Antwort

Da bei einer geradlinigen gleichförmigen Bewegung keine Geschwindigkeitsänderung stattfindet, herrscht keine Beschleunigung. Die Beschleunigung ist somit 0.

Frage anzeigen

Frage

Ein PKW fährt auf einer Straße mit einer konstanten Geschwindigkeit von 20 m/s. Welche Geschwindigkeit hat er in der Einheit km/h?

Antwort anzeigen

Antwort

Die Umrechnung von m/s in km/h erfolgt durch die Multiplikation mit 3,6. Der PKW fährt also mit einer Geschwindigkeit von 72 km/h auf der Straße.

Frage anzeigen
60%

der Nutzer schaffen das Geradlinige Bewegung Quiz nicht! Kannst du es schaffen?

Quiz starten

Finde passende Lernmaterialien für deine Fächer

Alles was du für deinen Lernerfolg brauchst - in einer App!

Lernplan

Sei rechtzeitig vorbereitet für deine Prüfungen.

Quizzes

Teste dein Wissen mit spielerischen Quizzes.

Karteikarten

Erstelle und finde Karteikarten in Rekordzeit.

Notizen

Erstelle die schönsten Notizen schneller als je zuvor.

Lern-Sets

Hab all deine Lermaterialien an einem Ort.

Dokumente

Lade unzählige Dokumente hoch und habe sie immer dabei.

Lern Statistiken

Kenne deine Schwächen und Stärken.

Wöchentliche

Ziele Setze dir individuelle Ziele und sammle Punkte.

Smart Reminders

Nie wieder prokrastinieren mit unseren Lernerinnerungen.

Trophäen

Sammle Punkte und erreiche neue Levels beim Lernen.

Magic Marker

Lass dir Karteikarten automatisch erstellen.

Smartes Formatieren

Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.

Melde dich an für Notizen & Bearbeitung. 100% for free.