StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
Americas
Europe
Dir ist bestimmt schon einmal aufgefallen, dass Wasser und Honig unterschiedliche Konsistenzen haben. Der Honig fließt langsamer ab und wirkt zäher als das Wasser. Die Viskosität gibt genau diese Eigenschaft an, sie beschreibt die Zähigkeit eines Stoffes.Wie kannst du nun beschreiben, wie zäh- oder dünnflüssig eine Flüssigkeit ist?Die Viskosität beschreibt die Zähigkeit einer Flüssigkeit oder eines Gases. Eine Flüssigkeit mit einer hohen Viskosität…
Entdecke über 200 Millionen kostenlose Materialien in unserer App
Speicher die Erklärung jetzt ab und lies sie, wenn Du Zeit hast.
SpeichernLerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmeldenDir ist bestimmt schon einmal aufgefallen, dass Wasser und Honig unterschiedliche Konsistenzen haben. Der Honig fließt langsamer ab und wirkt zäher als das Wasser. Die Viskosität gibt genau diese Eigenschaft an, sie beschreibt die Zähigkeit eines Stoffes.
Wie kannst du nun beschreiben, wie zäh- oder dünnflüssig eine Flüssigkeit ist?
Die Viskosität beschreibt die Zähigkeit einer Flüssigkeit oder eines Gases. Eine Flüssigkeit mit einer hohen Viskosität (dickflüssig) ist weniger fließfähig als eine Flüssigkeit mit einer niedrigen Viskosität (dünnflüssig). Bei der Viskosität wird außerdem unterschieden zwischen der dynamischen Viskosität und der kinematischen Viskosität.
Das Verhalten der Teilchen unter bestimmten Voraussetzungen in einem Stoff ist verantwortlich für die Viskosität dieses Stoffes. Je stärker die Bindung der einzelnen Teilchen in einem Stoff ist, desto höher ist die Viskosität bzw. desto dickflüssiger ist dieser Stoff.
Flüssigkeiten und Gase bestehen aus großen Mengen kleinster Teilchen. Diese Teilchen sind immer in Bewegung, allerdings behindern sie sich gegenseitig und stoßen aneinander. Dadurch entsteht eine sogenannte innere Reibung im Fluid oder Gas. Je mehr dieser Teilchen also aneinander reiben, desto höher ist die innere Reibung und verhindert eine schnellere Bewegung des Fluids.
Die Ursache für die innere Reibung ist die Anziehungskraft der Teilchen eines Stoffes. Die Bindungskräfte von Teilchen und Moleküle sorgen dafür, dass die Teilchen eines Stoffes zusammenhalten. Dabei handelt es sich um elektrostatische Kräfte, die auf die Ladung der einzelnen Teilchen eines Stoffes wirken. Um diese anziehenden Kräfte zu überwinden und eine Bewegung zu erzeugen, muss Energie aufgebracht werden.
Schauen wir uns die Bindungskräfte beim Wasser einmal gemeinsam an. Die Wasserstoffbrückenbindungen oder auch H-Brücken halten die Wassermoleküle dicht beieinander.
Abb. 1: Wasserstoffbrückenverbindung
Die Wasserstoffbrückenbindungen sorgen dafür, dass sich die Wassermoleküle binden und dicht beieinander bleiben. Um das Wasser zu bewegen muss eine diese Wasserstoffbrückenbindung überwunden werden.
Für die Viskosität ist vor allem relevant, wie groß die Bindungskräfte sind. Je größer diese Bindungskräfte sind, desto größer ist die innere Reibung und desto höher ist wiederum die Viskosität.
Eine höhere Energie zum Überwinden der Bindungskräfte kann auch durch thermische Energie erbracht werden, denn durch höhere Temperaturen steigt eben diese thermische Energie. Es steht mehr Energie zur Verfügung und die Anziehungskräfte können einfacher überwunden werden. Die Viskosität nimmt also mit steigender Temperatur ab.
Für Gase gelten die Bindungskräfte nach der Van-der-Waals-Gleichung. Einen Artikel dazu findest du auch bei uns.
Die Viskosität wird unterteilt in die dynamische- und die kinematische Viskosität. Sie sind abhängig von unterschiedlichen Faktoren wie Temperatur, Dichte oder ihrem Verhalten im Zusammenhang mit der Strömungsmechanik.
In der Regel ist, wenn wir von der Viskosität reden, die dynamische Viskosität gemeint.
Die dynamische Viskosität wird mit (gesprochen "eta") angegeben. Die dynamische Viskosität ist abhängig vom Stoff und der Temperatur des Stoffes und wird in der Einheit Pascalsekunde Pa angegeben.
Die Fluidität (gesprochen "Phi") oder auch Fließfähigkeit, gibt ebenfalls an, wie dick- oder dünnflüssig ein Fluid ist. Die Fluidität ist der Kehrwert der dynamischen Viskosität und wird berechnet mit und wird in der Einheit angegeben.
Die Viskosität wird in der Regel nicht berechnet, sondern wird angegeben als Temperatur- und Stoffabhängige Einheit. Du kannst die Viskosität mithilfe eines Viskosimeter ermitteln.
Das Viskosimeter ist ein Messgerät zur Messung der Viskosität von Flüssigkeiten. Die Flüssigkeit wird in eine Bewegung gezwungen und der Widerstand der Flüssigkeit entgegen dieser Bewegung wird gemessen. Es gibt verschiedene Formen von Viskosimetern, z. B. das Kapillarviskosimeter, bei dem die Zeit gemessen wird, die eine bestimmtes Volumen einer Flüssigkeit benötigt, um durch eine kleine Röhre zu fließen.
Neben der dynamischen Viskosität gibt es auch die kinematische Viskosität.
Die kinematische Viskosität beschreibt das Viskositäts-Dichte Verhältnis.
Die kinematische Viskosität (gesprochen "ny") ist die dynamischen Viskosität geteilt durch die Dichte eines Stoffes.
: dynamische Viskosität in
: Dichte des Stoffes in
Die Einheit der kinematischen Viskosität ist:
Dieses Verhältnis von dynamischer Viskosität und der Dichte, ist eine Einheit, bei der die Kraft keine Rolle spielt. Scherkräfte (mehrere versetzt wirkende Kräfte) nehmen keinen Einfluss auf die kinematische Viskosität.
Newtonsche Flüssigkeiten behalten ihre Viskosität auch bei wirkenden Scherkräften bei. Sie folgen den, von Isaac Newton aufgestellten Strömungsgesetzen der Mechanik. Unabhängig von wirkenden Kräften behalten sie ihre Viskosität bei. Auch Gase folgen den Gesetzen der Strömungsmechanik, weshalb Gase auch Newtonsche Fluide sind. Beispiele für Newtonsche Flüssigkeiten sind Wasser, Öl und Alkohol.
Die kinematische Viskosität wird häufig zur Untersuchung von Maschinenöl berechnet, um die Qualität und die Nutzbarkeit vom Öl zu überprüfen. Öl ist nämlich eine newtonsche Flüssigkeit und verhält sich damit proportional zu wirkenden Scherkräften, wie sie in Maschinen auftreten könnten.
Die sogenannten nicht-newtonschen Flüssigkeiten verhalten sich unter Belastung anders und verändern ihre Viskosität. Sie verhalten sich nicht der Strömungsmechanik entsprechend und sind in ihrer Zähigkeit durch Kräftewirkung beeinflussbar. Ein klassisches Beispiel ist das Ketchup. Während das Ketchup in der Flasche noch relativ fest ist und nur sehr zähflüssig rausfließt, kann man es mit einem Schlag auf die Flasche weniger viskos machen, sodass das Ketchup einfacher hinaus fließt. Deswegen fließt auch immer auf einmal so viel raus, nachdem lange gar nichts gekommen war.
Wenn du selbst mit Nicht-Newtonscher Flüssigkeit experimentieren willst, kannst du mithilfe von nur zwei Haushaltsmitteln selbst experimentieren! Du brauchst nur Wasser und Speisestärke (Maisstärke funktioniert auch). Vermenge das Wasser und die Speisestärke im Verhältnis 1:2 miteinander (z. B. 100ml Wasser mit 200g Speisestärke).
Abbildung 2: Nicht-Newtonsche Flüssigkeit auf einem LautsprecherQuelle: wikipedia.org
Daraus bekommst du eine relativ zähe Flüssigkeit. Wenn du nun etwas Druck auf die Flüssigkeit ausübst, indem du zum Beispiel mit der flachen Hand draufhaust, solltest du feststellen, dass die Flüssigkeit ruckartig fest wird.
Wenn du eine solche Nicht-Newtonsche Flüssigkeit auf einen Lautsprecher gießt und den Lautsprecher anstellst, kannst du genau beobachten, wie die Schwingungen des Lautsprechers die Viskosität der Flüssigkeit verändern. Es formt sich eine Art feste Kugel, die über den Lautsprecher hüpft.
Die Viskosität verhält sich für Gase und Flüssigkeiten unterschiedlich und hat verschiedene Merkmale und Zusammenhänge mit der Temperatur.
Die Viskosität von Flüssigkeiten kann umgangssprachlich erklären, ob diese Flüssigkeit dick- oder dünnflüssig ist. Die Viskosität von Flüssigkeiten ist abhängig von der Temperatur und dem Stoff selbst. Je höher die Temperatur einer Flüssigkeit, desto dünnflüssiger ist sie, also weniger viskos.
Die Eigenschaften der Viskosität von Flüssigkeiten lassen sich einfach veranschaulichen und du kannst sie dir leicht vorstellen. Hier ein Beispiel dazu:
Am besten kannst du das Verhalten von Flüssigkeiten mit unterschiedlichen Viskositäten beobachten, wenn du beobachtest, wie verschiedene Flüssigkeiten fließen oder sich bewegen.
Wenn du Wasser in ein Glas gießt, dann fällt dir auf, dass das dünnflüssige Wasser sehr schnell und problemlos fließt. Das liegt an der geringen Viskosität.
Abbildung 4: Honig fließt langsam ab Quelle: pixabay.com
Honig hingegen ist deutlich zäher. Der Honig fließt nur langsam vom Honiglöffel ab. Im Vergleich zum Wasser ist die Bewegung deutlich langsamer, da der Honig viskoser ist als das Wasser.
Durch eine höhere Viskosität wird aber auch die Bewegung von einer Flüssigkeit gebremst.
Abb. 5: Windböhen über Wasser
Die Windböen bewegen das Wasser, wobei vor allem die Wasseroberfläche als erste Schicht bewegt wird. Durch die Bindung werden die weiteren Wasserschichten ebenfalls mit bewegt. Durch die innere Reibung der Flüssigkeit wird diese Bewegung fortschreitend abgebremst. Wenn es sich nun um noch viskosere Flüssigkeiten als Wasser, wie zum Beispiel Honig handeln würde, dann wäre die innere Reibung deutlich größer und die Bewegung wäre deutlich kleiner.
Hier hast du noch eine Tabelle, um die Viskositäten von klassischen Flüssigkeiten vergleichen zu können.
Flüssigkeit (und Temperatur) | dynamische Viskosität in |
Wasser (5 °C) | 1,52 |
Wasser (20 °C) | 1,00 |
Olivenöl | 100 |
Honig | 10000 |
Motoröl (150 °C) | 3 |
Motoröl (25 °C) | 100 |
Wie unterscheidet sich nun die Viskosität von Flüssigkeiten zu der Viskosität von Gasen?
Die Viskosität von Gasen ist abhängig von der Temperatur des Gases. Anders als bei Flüssigkeiten steigt die Viskosität von Gasen mit zunehmender Temperatur. Bei steigender Temperatur wird die Viskosität proportional größer. Der Luftdruck kann bei der Bestimmung der Viskosität in der Regel vernachlässigt werden.
Hier wieder ein paar klassische Werte für die dynamische Viskosität einiger relevanten Gase:
Gas | in () bei 20 °C |
Luft (Erdatmosphäre) | 17,1 |
Sauerstoff | 19,2 |
Kohlenstoffdioxid | 13,8 |
Helium H | 18,6 |
Wasserstoff | 8,4 |
Die Viskosität ist abhängig vom Stoff und der Temperatur des Stoffes.
Die dynamische Viskosität wird in Pascalsekunden angegeben.
Eine hohe Viskosität sagt eine hohe Zähigkeit des Stoffes aus. Bei einer Flüssigkeit mit hoher Viskosität wäre von einer dickflüssigen Flüssigkeit die Rede.
Die kinematische Viskosität beschreibt das Viskositäts-Dichte Verhältnis. Sie wird verwendet um qualitativ Aussagen über die Viskosität unterschiedlicher Stoffe machen zu können.
Wie möchtest du den Inhalt lernen?
Wie möchtest du den Inhalt lernen?
Kostenloser physik Spickzettel
Alles was du zu . wissen musst. Perfekt zusammengefasst, sodass du es dir leicht merken kannst!
Sei rechtzeitig vorbereitet für deine Prüfungen.
Teste dein Wissen mit spielerischen Quizzes.
Erstelle und finde Karteikarten in Rekordzeit.
Erstelle die schönsten Notizen schneller als je zuvor.
Hab all deine Lermaterialien an einem Ort.
Lade unzählige Dokumente hoch und habe sie immer dabei.
Kenne deine Schwächen und Stärken.
Ziele Setze dir individuelle Ziele und sammle Punkte.
Nie wieder prokrastinieren mit unseren Lernerinnerungen.
Sammle Punkte und erreiche neue Levels beim Lernen.
Lass dir Karteikarten automatisch erstellen.
Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.
Melde dich an für Notizen & Bearbeitung. 100% for free.
Speichere Erklärungen in deinem persönlichen Bereich und greife jederzeit und überall auf sie zu!
Mit E-Mail registrieren Mit Apple registrierenDurch deine Registrierung stimmst du den AGBs und der Datenschutzerklärung von StudySmarter zu.
Du hast schon einen Account? Anmelden