StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
Americas
Europe
Die Blut-Hirn-Schranke, kurz BHS, ist eine Barriere zwischen dem zentralen Nervensystem und dem Blutgefäßsystem, welche fast das ganze Gehirn umgibt. Nur bestimmte Substanzen können die Blut-Hirn-Schranke passieren und so zum Gehirn vordringen. Daher bezeichnet man sie als selektiv durchlässig oder auch semipermeabel. Durch diese Eigenschaft schützt die Blut-Hirn-Schranke unser Gehirn vor potentiell schädlichen Substanzen, Krankheitserregern und sonstigen Stoffen, welche das innere Milieu…
Entdecke über 200 Millionen kostenlose Materialien in unserer App
Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmeldenDie Blut-Hirn-Schranke, kurz BHS, ist eine Barriere zwischen dem zentralen Nervensystem und dem Blutgefäßsystem, welche fast das ganze Gehirn umgibt. Nur bestimmte Substanzen können die Blut-Hirn-Schranke passieren und so zum Gehirn vordringen. Daher bezeichnet man sie als selektiv durchlässig oder auch semipermeabel. Durch diese Eigenschaft schützt die Blut-Hirn-Schranke unser Gehirn vor potentiell schädlichen Substanzen, Krankheitserregern und sonstigen Stoffen, welche das innere Milieu stören könnten.
Neben der Blut Hirn Schranke existiert im zentralen Nervensystem (ZNS) auch eine Blut Liquor Schranke, die eine Barriere zwischen dem Nervenwasser und dem Blutsystem darstellt. In anderen Regionen des Körpers gibt es noch weitere Barrieren, die ähnlich funktionieren. Dazu gehören zum Beispiel die Plazentaschranke, die das fetale Blut von dem der Mutter trennt. Ein anderes Beispiel ist die Blut-Harn-Schranke in der Niere, die unerlässlich für die Filtration des Blutes ist.
Früher dachte man, dass sich die Blut-Hirn-Schranke bei Babys erst im Laufe der ersten Lebenswochen ausbildet. Mittlerweile weiß man aber, dass die Blut-Hirn-Schranke auch schon bei Neugeborenen besteht. Allerdings wird vermutet, dass sie sich im Laufe der Zeit weiterentwickelt und allmählich immer undurchlässiger wird.
Die Blut-Hirn-Schranke setzt sich aus mehreren Schichten zusammen. Von außen nach innen (zum Gehirn hin) lassen sich folgende Schichten unterscheiden:
Kapillarendothel
Basalmembran
Astrozyten
Die kleinsten Blutgefäße des Gehirns sind die Kapillaren. Dementsprechend wird von außen betrachtet die erste Schicht der Blut-Hirn-Schranke durch das Kapillarendothel gebildet.
Ein Endothel ist ein Zellverband aus einzelnen Endothelzellen. Bei den Endothelzellen handelt es sich um spezialisierte Zellen, die die Gefäße des Körpers auskleiden und in der Lage sind, unterschiedlich durchlässige Schranken zu bilden.
Endothelzellen finden sich in allen Blutgefäßen des Körpers. Die Endothelzellen der Kapillaren der Blut-Hirn-Schranke zeigen allerdings eine Besonderheit, welche das zentrale Element der Blut-Hirn-Schranke darstellt. Sie sind nämlich über sogenannte Tight Junctions miteinander verbunden.
Diese Verbindungen zwischen den Zellen sorgen dafür, dass ein Übertritt von diversen Substanzen oder Krankheitserregern über die Zwischenzellräume (= parazellulär) wie in anderen Bereichen des Körpers nicht möglich ist. Man spricht hierbei auch von einer Diffusionsbarriere. Wollen bestimmte Substanzen diese Barriere überwinden, so müssten sie den Weg durch die Zelle wählen (= transzellulär) und das ist für viele Stoffe nicht möglich.
Für die Etablierung der Tight Junctions sind sogenannte Membranproteine (zum Beispiel Occludin und Claudin) notwendig, welche die benachbarten Zellen aneinander kleben, sodass ein kontinuierliches Epithel entsteht. Hierzu umgeben die Proteine die Zellen wie ein Gürtel.
Übrigens gibt es neben den Tight Junctions im Körper noch andere Arten von Zellkontakten, beispielsweise die Gap Junctions.
Perizyten stellen keine eigene, kontinuierliche Schicht der Blut-Hirn-Schranke im eigentlichen Sinne dar. Sie sind aber dennoch ein erwähnenswerter Bestandteil der Blut-Hirn-Schranke. Denn die Perizyten lagern sich den Kapillarwänden der Blut-Hirn-Schranke an und tragen dort zur Aufrechterhaltung der engen Zellkontakte des Endothels bei.
Den Endothelzellen liegt die Basalmembran als nächste Schicht der Blut-Hirn-Schranke an. Basalmembranen bestehen im Wesentlichen aus Kollagen und Polysaccharidkomplexen. Sie dienen im ganzen Körper dazu, die ihnen angrenzenden Zellverbände – also die Epithelien und Endothelien – zu stabilisieren.
Die letzte Schicht der Blut-Hirn-Schranke wird von den Astrozyten gebildet. Astrozyten sind besondere Zellen, die es nur im Gehirn und Rückenmark gibt. Die Bezeichnung Astrozyt leitet sich von dem griechischen Wort ástron ab, was soviel bedeutet wie Stern. Wie es zu dieser Bezeichnung kommt, wird sofort klar, wenn man sich die Form eines Astrozyten anschaut. Denn Astrozyten sind sternförmige Zellen des zentralen Nervensystems.
Die Astrozyten bilden selber keine undurchlässige Schranke aus. Dafür bewirken sie aber die Bildung der Tight Junctions zwischen den Endothelzellen, indem sie Botenstoffe ausschütten. Außerdem sind Astrozyten im Nervensystem wichtig für die Ernährung der Nervenzellen.
Abbildung 1: Blut-Hirn Schranke
Die Blut-Hirn-Schranke muss im Wesentlichen drei Funktionen erfüllen:
Die Blut-Hirn-Schranke schützt das Gehirn als immunologische Barriere vor dem Eintritt von Krankheitserregern und hält Giftstoffe ab. Es gibt aber auch Giftstoffe wie Alkohol oder Drogen, welche die Blut-Hirn-Schranke überqueren können.
Eine weitere wichtige Funktion der BHS ist die Versorgung des Gehirns mit Nährstoffen und der Abtransport von Abfallprodukten des Stoffwechsels. Dabei ist es hilfreich, dass zum Beispiel Sauerstoff-, Kohlenstoffdioxid- und Wassermoleküle sehr klein sind und somit die Blut-Hirn-Schranke ohne Weiteres überqueren können. Aber nicht nur besonders kleine, sondern auch fettlösliche beziehungsweise unpolare Stoffe können die Blut-Hirn-Schranke durch Diffusion überwinden.
Anders verhält es sich mit wasserlöslichen, polaren Substanzen, die nicht einfach durch die Blut-Hirn-Schranke diffundieren können. Zu dieser Gruppe gehört beispielsweise auch das wasserlösliche Dopamin. Ein weiteres Beispiel für eine Substanz, die nicht über Diffusion ins Gehirn gelangen kann, ist die wasserlösliche Glukose. Sie ist die wichtigste Energiequelle des Gehirns – einem Organ mit einem besonders hohen Energiebedarf – und muss ihm kontinuierlich zugeführt werden. Aber wie gelangt Glukose nun aus dem Blut in das Gehirn?
Für einige Moleküle wie die Glukose gibt es spezielle Transportsysteme. Im Falle der Glucose handelt es sich dabei um einen Carrier-vermittelten Transport mithilfe des GLUT1-Transporters.
Bei einem Carrier-vermittelten Transport werden die Moleküle mithilfe eines an sie bindenden Membranproteins passiv (also entlang des Konzentrationsgefälles) von der einen Seite der Membran zur anderen Seite geführt. Das wird durch eine Konformationsänderung des Carriers durch die Bindung des Moleküls ermöglicht.
Ein Weg zur Überquerung der BHS für Ionen ist die membranständige Na/K-ATPase.Sie ermöglicht einen Transport der Ionen unter Energieverbrauch gegen ein Konzentrationsgefälle. Der Austausch von Ionen ist wichtig für die Konstanthaltung des inneren Milieus des Gehirns. Abweichungen dieses Gleichgewichts (zum Beispiel eine Änderung des pH-Wertes) können Schäden an den Nervenzellen hervorrufen, die nicht reversibel sind.
Die Blut-Hirn-Schranke kann aus verschiedenen Gründen für Stoffe, die das ZNS nicht erreichen sollen, passierbar werden. Zu den Gründen zählen unter anderem Entzündungen des zentralen Nervensystems, beispielsweise im Rahmen der Erkrankung Multiple Sklerose oder bakteriellen Meningitiden (Hirnhautentzündungen). Aber auch Tumore können die Blut-Hirn-Schranke unterbrechen. In der Folge kann eventuell das Gleichgewicht im Gehirn nicht mehr aufrechterhalten werden und Giftstoffe können in das zentrale Nervensystem gelangen.
Die Blut-Hirn-Schranke verhindert den direkten Kontakt von Blutgefäß und Nervenzelle. Durch krankhafte Vorgänge kann sie unterbrochen und damit in ihrer Funktion gestört werden. Es gibt aber auch Regionen des Gehirns, an denen die Blut-Hirn-Schranke fehlt.
Bei diesen Regionen handelt es sich um:
In diesen Bereichen des Gehirns ist ein direkter Neuronen-Blut-Kontakt sinnvoll. In der Neurohypophyse beispielsweise werden die Hormone Oxytocin und Vasopressin gespeichert. Diesen müssen über das Blut zu ihren Zielzellen gelangen. Daher wäre eine Blut-Hirn-Schranke zwischen Neurohypophyse und Blutgefäß unangebracht.
Auch im Bereich der Area postrema gibt es keine Blut-Hirn-Schranke, da eine Barriere hier die Funktion dieses Gehirnareals stören würde. Denn bei der Area postrema handelt es sich um eine sogenannte Chemorezeptoren-Triggerzone. Das bedeutet, dass hier Rezeptoren zur Erkennung von Giftstoffen im Blut liegen. Sie lösen über eine Aktivierung des Brechzentrums im Gehirn Erbrechen aus. Auch hier wird klar, warum dieser Teil des Gehirns mit dem Blut in Verbindung stehen muss.
Die Blut-Hirn-Schranke ist durchlässig für besonders kleine Moleküle wie Sauerstoff, oder lipophile beziehungsweise unpolare Substanzen. Aber auch wasserlösliche Moleküle wie Glukose können die Blut-Hirn-Schranke überwinden, wenn es ein spezielles Transportsystem für sie gibt.
Heutzutage geht man davon aus, dass sich die Blut-Hirn-Schranke schon vor der Geburt schließt und Neugeborene somit mit einer bestehenden Blut-Hirn-Schranke zur Welt kommen. Es wird aber vermutet, dass sich die Durchlässigkeit der BHS im Laufe der Zeit noch verändert.
Nur besonders kleine oder lipophile, unpolare Substanzen können die Blut-Hirn-Schranke einfach überwinden. Dopamin erfüllt diese Eigenschaften nicht und besitzt auch kein eigenes Transportsystem, weshalb es die Blut-Hirn-Schranke nicht überwinden kann.
Die Blut-Hirn-Schranke, kurz BHS, ist eine Barriere zwischen dem zentralen Nervensystem und dem Blutgefäßsystem, welche fast das ganze Gehirn umgibt. Nur bestimmte Substanzen können sie passieren und so zum Gehirn vordringen.
Wie möchtest du den Inhalt lernen?
94% der StudySmarter Nutzer erzielen bessere Noten.
Jetzt anmelden94% der StudySmarter Nutzer erzielen bessere Noten.
Jetzt anmeldenWie möchtest du den Inhalt lernen?
Kostenloser biologie Spickzettel
Alles was du zu . wissen musst. Perfekt zusammengefasst, sodass du es dir leicht merken kannst!
Sei rechtzeitig vorbereitet für deine Prüfungen.
Teste dein Wissen mit spielerischen Quizzes.
Erstelle und finde Karteikarten in Rekordzeit.
Erstelle die schönsten Notizen schneller als je zuvor.
Hab all deine Lermaterialien an einem Ort.
Lade unzählige Dokumente hoch und habe sie immer dabei.
Kenne deine Schwächen und Stärken.
Ziele Setze dir individuelle Ziele und sammle Punkte.
Nie wieder prokrastinieren mit unseren Lernerinnerungen.
Sammle Punkte und erreiche neue Levels beim Lernen.
Lass dir Karteikarten automatisch erstellen.
Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.
Melde dich an für Notizen & Bearbeitung. 100% for free.