StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
Americas
Europe
Die inhibitorischen Neurotransmitter wirken hemmend auf den Körper.
Entdecke über 50 Millionen kostenlose Lernmaterialien in unserer App.
Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmeldenDie inhibitorischen Neurotransmitter wirken hemmend auf den Körper.
Begriffserklärung Inhibitorische Neurotransmitter
Inhibitorische Neurotransmitter haben zunächst einmal den gleichen Weg wie exzitatorische Neurotransmitter am Neuron im Nervensystem. Dabei wirken sie an der Synapse. Sie sind in speziellen Vesikeln im Endknöpfchen der Postsynapse des Neurons enthalten.
Abbildung 1: Aufbau einer Synapse Quelle: biologie-unterricht.com.
Wenn nun ein Aktionspotential an diesem Endknöpfchen der Nervenzelle eintrifft, dann wandern die Vesikel, gefüllt mit inhibitorischen Neurotransmittern, in Richtung des synaptischen Spalts der Synapse.
Von da aus fusionieren sie mit der Membran der Nervenzelle. Dabei werden dann inhibitorischen Neurotransmitter ausgeschüttet.
Falls du nicht mehr so ganz genau weißt, wie die Erregungsübertragung funktioniert, schau dir am besten vorher nochmal unseren Artikel dazu an.
Die in den synaptischen Spalt vom Neuron abgegebenen inhibitorischen Transmitter, beispielsweise GABA, wandern durch diesen Spalt. Dabei schaffen sie es, von der Präsynapse eines Neurons zur Postsynapse eines anderen Neurons zu diffundieren. Diese ergeben zusammen mit dem synaptischen Spalt die Synapse. Daraufhin docken sie an die Postsynapse, der zweiten Nervenzelle der Synapse, an.
Wenn nun die inhibitorischen Transmitter an der Postsynapse der Nervenzelle andocken, tun sie das nicht willkürlich, sondern an speziellen ligandengesteuerten Rezeptoren. Beim Beispiel mit GABA als Neurotransmitter der Synapse, dockt dieser dann an spezielle GABA Rezeptoren am Neuron an. Daraufhin löst dieser Transmitter-Rezeptor-Komplex meist ein IPSP an der Postsynapse aus.
Dies geschieht nur durch den GABA Rezeptor, andere Rezeptoren lösen andere Wirkungen an der Synapse aus. Die Wirkung eines Neurotransmitters ist also maßgeblich abhängig von seinem Rezeptor.
Im Körper und Nervensystem gibt es ein paar inhibitorische Neurotransmitter, die an ihre Rezeptoren an der Nervenzelle andocken:
Mehr über GABA und Glycin erfährst du in den entsprechenden Artikeln auf unserer Seite.
GABA ist der am häufigsten vorkommende Neurotransmitter im Nervensystem. GABA ist die Abkürzung für Gamma-Aminobuttersäure, welche aus der proteinogenen Aminosäure Glutamat hergestellt wird. Sie dockt an ihrem typischen GABA Rezeptor an, um seine Wirkung zu entfalten. GABA wirkt überwiegend im synaptischen Spalt und damit hemmend auf die Postsynapse der Nervenzelle.
Glycin ist ebenso ein häufig vorkommender Neurotransmitter im Nervensystem. Dabei wirkt der Transmitter besonders im ZNS inhibierend. Es kann nur postysynaptisch angreifen. Dabei hemmt auch Glycin, genau wie GABA, die Erregungsweiterleitung. Der Transmitter hat dabei auch einen eigenen Rezeptor an der Nervenzelle. Glycin ist aber im Gegensatz zu GABA seltener vorhanden und gehört zu den proteinogenen Aminosäuren. GABA hingegen ist das biogene Amin der proteinogenen Aminosäure Glutamat, aber keine Aminosäure an sich.
Sowohl GABA als auch Glycin kommen an der Präsynapse in small clear core vesicles (SCCV) mit einem Durchmesser von 50–200 nm vor. Daran können sie teilweise erkannt werden.
Ein inhibitorisches Postsynaptisches Potential, kurz IPSP, wird von den inhibitorischen Neurotransmittern an der Postsynapse ausgelöst. Dort sorgen spezielle Rezeptoren für dieses negative, also hemmende Membranpotential, an der Postsynapse.Der Ablauf an der Postsynapse findet wie folgt statt:
Der inhibitorische Neurotransmitter dockt an die Rezeptoren der postsynaptischen Membran des Neurons an.
Die Kanäle öffnen sich dadurch (Schlüssel-Schloss-Prinzip) und meist werden durch den Rezeptor Chloridionen in die Postsynapse aufgenommen.
Das Membranpotential der Postsynapse wird vom normalen Wert beim Ruhepotential (ca. -70mV) negativiert.
Die Erregungsweiterleitung in diesem Teil des Nervensystems wird dadurch eingeschränkt oder ganz gehemmt.
Das postsynaptische Potential ist essenziell für die Weiterleitung der Erregung im Nervensystem. Erst, wenn dieses Potential positiv genug ist, (oft bei ca. - 40mV), kann ein Aktionspotential am Axonhügel ausgelöst werden. Nur mit Aktionspotential kann eine Erregungsweiterleitung stattfinden.Die Positivierung oder Negativierung der postsynaptischen Membran geschieht auf zwei unterschiedliche Weisen:
Das Soma und die Dendriten der Postsynapse ist nicht nur mit einer, sondern mit vielen Nervenzellen verknüpft. Wenn nun viele hemmende und wenig erregende Synapsen an einer Stelle des Somas der Nervenzelle anknüpfen und all diese ihre Wirkung entfalten, wird die erregende von den Hemmenden überdeckt und es kommt zum IPSP. Dies geschieht nur bei naher Distanz der Rezeptoren, da sonst der Abstand zur Summation zu groß wäre.
Die zweite Beeinflussung der erregenden und hemmenden Synapsen an das nächste Soma (Nervenzellkörper) ist die zeitliche Summation. Bei dieser geht es darum, wie schnell eine Synapse wie viele Impulse auf einmal an die Postsynapse sendet. Wenn die inhibitorische Synapse mehr „feuert“ als die exzitatorische Synapse, dann überlagert sie dadurch die exzitatorische. Somit kommt es dadurch wieder zum IPSP.
Die räumliche und zeitliche Summation der Neurotransmitter darf man nun aber nicht getrennt sehen. Beide Faktoren, also Abstand und Intensität der Weiterleitung, haben einen wichtigen Einfluss auf die Postsynapse und damit auf die Erregungsweiterleitung. Somit werden bei jeder Erregungsübertragung im Nervensystem sowohl die räumliche als auch die zeitliche Summation berücksichtigt. Zusammen ergibt sich dann möglicherweise ein Aktionspotential, welches weitergeleitet wird.
Die räumliche (mittig) und zeitliche Summation (rechts) gegenüber einer einzelnen Erregung. Das Beispiel zeigt den Prozess für eine erregende Synapse, das gleiche Prinzip gilt aber auch bei einer inhibitorischen Synapse Quelle: eref.thieme.de.
Doch warum sind die inhibitorischen Neurotransmitter im Nervensystem nun so wichtig? Wenn sie die Erregungsweiterleitung hemmen, scheint es, als hätten GABA und Co. einen negativen Einfluss auf den Körper und das Nervensystem. Dem ist aber nicht so.
Inhibitorische Neurotransmitter sind elementar für das Funktionieren des Organismus'. Sie fungieren als eine Art Filter der Neurotransmission. Ohne die Inhibition wären manche Nerven dauerhaft gereizt und eine Differenzierung der Reize sowie ihre Einordnung wäre für den Körper und das Zentralnervensystem sehr belastend. Durch die inhibitorischen Neurotransmitter kann das ZNS also die Neurotransmission eindämmen.
GABA hemmt beispielsweise den Thalamus, also den Ort im Gehrin, der für die Umschaltung von Sinneseindrücken zuständig ist. Somit kommt es durch GABA nicht zu einer Überforderung des Gehirns.
Die inhibitorischen Neurotransmitter stellen eine Art Schutz für den Organismus dar. Damit kann der Körper die Reize besser einordnen. Zudem kann es durch die inhibitorischen Neurotransmitter nicht dazu kommen, dass der Körper überlastet wird. Wenn nämlich alle Reize im Gehirn ankommen würden und es keine Hemmung der Reizweiterleitung gäbe, wäre der Körper völlig überlastet.
Schaut euch am besten noch den Artikel zu exzitatorischen Neurotransmittern an!
Inhibitorische Neurotransmitter haben eine hemmende (inhibitorische) Wirkung.
Die inhibitorischen Neurotransmitter befinden sich in Vesikeln der Präsynapse und werden in den synaptischen Spalt abgegeben.
Meist geschieht die Hemmung durch die inhibitorischen Neurotransmitter durch ein IPSP.
Beim IPSP wird das Membranpotential der Postsynapse negativer.
Das postsynaptische Potential setzt sich zusammen durch räumliche und zeitliche Summation.
Inhibitorische Neurotransmitter sind entscheidend für die Abstimmung im ZNS und Organismus und verhindern eine Reizüberflutung.
Karteikarten in Inhibitorische Neurotransmitter43
Lerne jetztWas bedeutet GABA ausgeschrieben?
Gamma-Aminobuttersäure
Welche grundsätzliche Wirkung hat GABA?
GABA wirkt hemmend.
Wo kommt GABA vor?
Im ZNS und in der Bauchspeicheldrüse.
An welchen Stellen wirkt GABA im ZNS?
Am Neuron oder im synaptischen Spalt.
Welche Aminosäure wird zu GABA umgewandelt?
Glutaminsäure bzw. Glutamat
Zu welcher Stoffklasse gehört GABA?
Zu den biogenen Aminen bzw. Neurotransmittern.
Du hast bereits ein Konto? Anmelden
Open in AppDie erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.
Melde dich an für Notizen & Bearbeitung. 100% for free.
Speichere Erklärungen in deinem persönlichen Bereich und greife jederzeit und überall auf sie zu!
Mit E-Mail registrieren Mit Apple registrierenDurch deine Registrierung stimmst du den AGBs und der Datenschutzerklärung von StudySmarter zu.
Du hast schon einen Account? Anmelden