StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
Americas
Europe
Das Membranpotential einer Zelle ist definiert als die Spannung, welche an der Membran dieser Zelle anliegt. Diese Spannung (Potenzial) kommt durch unterschiedlich geladene Teilchen (Ionen) auf der Außen- und Innenseite der Membran der Zelle zustande.
Entdecke über 50 Millionen kostenlose Lernmaterialien in unserer App.
Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmeldenDas Membranpotential einer Zelle ist definiert als die Spannung, welche an der Membran dieser Zelle anliegt. Diese Spannung (Potenzial) kommt durch unterschiedlich geladene Teilchen (Ionen) auf der Außen- und Innenseite der Membran der Zelle zustande.
Zum Aufkommen des Membranpotentials braucht es drei wichtige Kriterien:
Eine Barriere, die das Zellinnere und Zelläußere voneinander abgrenzt
Verschieden geladene Teilchen
Mechanismen, welche dafür sorgen, dass bestimmte geladene Teilchen die Barriere passieren können
Die Barriere in der Zelle bildet die Zellmembran, welche essenziell für das Aufkommen eines Potenzials und hier des Membranpotentials ist. Sie ist eine Doppellipidschicht und lässt keine geladenen Teilchen passieren. Dadurch ist sie ein idealer Isolator für das Zustandekommen des Membranpotentials und fungiert gleichzeitig als Schutz der Zelle. Die Abgrenzung der Zelle zu anderen Zellen und der Zellorganellen untereinander, wird als Kompartimentierung bezeichnet.
Die geladenen Teilchen (Ionen) sind äußerst wichtig für das Membranpotential und durch ihre unterschiedlichen Eigenschaften, wie ihre Größen und Ladungen, kommt es zum Membranpotential, also zur Spannung an der Membran.
Die zellulären Membranpotentiale des Menschen sind häufig durch Natriumionen und Kaliumionen bestimmt. Dabei befinden sich Kaliumionen und Anionen im Zellinneren. Natriumionen und Chloridionen hingegen liegen außerhalb der Zellmembran vor. Diese Verteilung liegt beispielsweise an der Zellmembran von Nervenzellen (Neuronen) vor.
Die Strukturen, die dafür sorgen, dass nur bestimmte geladene Teilchen die als Barriere dienende Zellmembran durchwandern können, sind sogenannte Ionenkanäle. Dabei haben verschiedene Membranen Kanäle für unterschiedliche Ionenarten. Diese verschiedenen Ionen mit ihren spezialisierten Kanälen sind der Grund dafür, dass im menschlichen Körper diverse Membranpotentiale vorkommen.
Das bedeutet, dass unterschiedliche Potenziale an den verschiedenen Zellmembranen anliegen. Die Membran ist also durch diese spezifischen Ionenkanäle nur teilweise durchlässig für ganz bestimmte Ionen (Semipermeabilität), wodurch ein Aufkommen des Membranpotentials ermöglicht wird.
Die Semipermeabilität kannst du dir wie einen Türsteher vorstellen. Nur bestimmte Moleküle dürfen die Membran passieren, andere werden durch die Membran aufgehalten. Dies ist nur der Fall, da die Membran semipermeabel für verschiedenste Stoffe ist.
Die Ionenkanäle sind Bedingung für das Zustandekommen des Membranpotentials. Dabei können die Ionen durch einen vorhandenen Konzentrationsunterschied durch die Kanäle diffundieren. Dabei ist ihr Ziel der Konzentrationsausgleich, sie benötigen zum Hindurchströmen keine Energie. Dies wird als passiver Transport bezeichnet.
Der aktive Transport hingegen kommt zum Einsatz, wenn Ionen gegen ihr Konzentrationsgefälle transportiert werden. Dafür wird Energie benötigt, die meist in Form von Adenosintriphosphat (ATP) bereitgestellt wird. Das ATP ist eine Energiewährung des Körpers.
Durch ein Zusammenspiel der oben genannten drei Begebenheiten kann ein Membranpotential entstehen. Der genaue Mechanismus zum Membranpotentsial wird im Folgenden näher aufgeführt.
Dadurch, dass die Zellmembran nicht für alle Ionen gleich gut durchlässig ist (semipermeabel), wandern einige Ionen in die Richtung, an der ihre Konzentration am niedrigsten ist (= Diffusion). Dieser Konzentrationsunterschied wird auch als Konzentrationsgefälle oder als chemischer Gradient des Ions bezeichnet.
Da aber nicht alle Ionen die Membran gleich gut passieren können, werden die wandernden Ionen nun gestoppt, bevor ein Konzentrationsausgleich zwischen Innen- und Außenseite der Zellmembran stattfinden kann. Das ist der erste Schritt, in der der Membran das Zustandekommen des Potenzials beziehungsweise Membranpotenzials ermöglicht wird.
Das passiert, weil es einen Ladungsunterschied zwischen Zellaußen- und innenseite gibt, der nicht aufgelöst werden kann. Dies liegt daran, dass nicht alle geladenen Teilchen die Membran durchwandern und damit einen Ladungsausgleich schaffen können. Das bedeutet, dass die Ionen, die nicht die Membran passieren können, der Grund dafür sind, dass dieser elektrische Gradient aufgebaut wird.
Man kann sich diesen elektrischen Gradienten wie einen Magneten vorstellen, der die aus der Membran ausströmenden Ionen anzieht und zurückhält, wodurch der Ionenfluss ab einer gewissen Stelle gestoppt wird. Wenn also die Triebkraft, einen Konzentrationsausgleich des Ions zu erzielen, gleich groß ist, wie die Kraft, welche die Ionen durch ihre Ladung zurückhält, kommt es zum Membranpotential.
Das Zustandekommen des Membranpotentials findest du hier nochmal in einer Definition für dich zusammengefasst.
Ein Membranpotential kommt zustande, wenn der chemische Gradient gleich dem elektrischen Gradienten eines Ions ist, für welches die Membran durchlässig ist. Diese Spannung an der Zellmembran, die sich durch die oben genannten Gegebenheiten einstellen kann, wird Membranpotential genannt.
Das Membranpotential ist besonders wichtig an Nervenzellen (= Neuronen) und wird vor dem Eintreffen eines Reizes an der Membran des Axons der Nervenzelle als Ruhemembranpotential oder Ruhepotential bezeichnet.
Die Membran am Axon einer Nervenzelle ist dabei durchlässig (= permeabel) für positiv geladene Kaliumionen, aber weniger durchlässig für positiv geladene Natriumionen und negativ geladene Ionen. Das bedeutet, sie besitzt für diese Ionen spezifische Kanäle. Diese ermöglichen nun erst das Zustandekommen eines Membranpotentials. Die Kaliumionen (K+) und negativen Anionen (A-) sind dabei vermehrt im Zellinneren und positive Natriumionen (Na+) und negative Chloridionen (Cl-) vermehrt an der Außenseite der Axonmembran zu finden.
Dadurch, dass Kalium durch die Membran hindurchfließen kann, fließt es zuerst nach außen. Dies geschieht, weil im Inneren die Kaliumkonzentration höher ist als außen und Kalium damit gewillt ist, sein Konzentrationsgefälle auszugleichen (chemischer Gradient). Es diffundiert zunächst durch die Zellmembran und ihre Kanäle hindurch. Ab einem gewissen Punkt werden die Kaliumionen von den negativ geladenen Anionen in der Zelle zurückgehalten (elektrischer Gradient).
Dadurch wird der Auswärtsstrom von Kaliumionen gestoppt und es stellt sich ein Gleichgewicht (Ruhepotential) an der Zellmembran ein. Das Zellinnere ist jetzt negativ und das Zelläußere positiv geladen. Dabei ist der chemische Gradient wieder gleich dem elektrischen Gradienten. Es hat sich also ein Potenzial an der Membran eingestellt, das Membranpotential.
Abbildung 1: Das Ruhepotentialeiner Nervenzelle mit ihren Ionen. Hier sieht man, dass sich viele Natriumionen und Chloridionen außen und Kaliumionen und Anionen (hier Proteine) innen befinden. Quelle: viamedici.thieme.de
Diese Spannung (also das Ruhepotential) beträgt circa –70 Millivolt und kann beispielsweise mit einem Oszilloskop gemessen werden.
Das Ruhepotential ist essenziell für die Nervenzelle und kann immer zwischen Aktionspotentialen gemessen werden. Somit schafft dieses Ruhepotential erst die Gegebenheit, die ein Aktionspotential ermöglicht und ist damit die Grundlage zur Weiterleitung von Reizen wie beispielsweise Schmerz, Druck oder Wärme.
Dabei sei nicht zu vergessen, dass auch das Aktionspotential ein Membranpotential ist. Denn immer, wenn Ionen an einer Membran anliegen und eine Spannung zu messen ist, liegt ein solches Potenzial vor. Das Aktionspotential wäre dann im Gegensatz zum Ruhepotential positiver, dennoch bildet es ein Potenzial und damit ein Membranpotential.
Abbildung 2: Messung des Ruhepotentials an der Axonmembran einer Nervenzelle, wobei die Spannung (das Membranpotential) ca. -70mV beträgt. Quelle: oliverkohlhaas.de
Es kommt zum Membranpotential, da die Zellmembran unterschiedlich durchlässig für ihre Ionen ist. Diese Ionen sind so verteilt, dass, wenn der elektrische Gradient gleich dem Chemischem ist, das Membranpotential (Spannung an der Zellmembran) zustande kommt.
Es ist negativ, da das Oszilloskop die Spannung vom Zelläußeren zum Zellinneren misst. Da es innen durch die Anionen aber negativer ist, ist die Differenz -70mV, also negativ.
Das Membranpotential ist die Spannung, die an einer Zellmembran anliegt und durch unterschiedlich geladene Ionen verursacht wird.
Das Ruhepotential ist relativ konstant, kann aber durch ein Aktionspotential (AP) positiver werden. Nach dem AP Peak, negativiert sich das Membranpotential aber wieder.
Karteikarten in Membranpotential43
Lerne jetztWas besagt die Ionentheorie?
Wer besitzt eine selektive Permeabilität?
Die Membran der Nervenzelle
Was weist die die Membran der Nervenzelle auf?
Sie weist Poren auf, die von Proteinmolekülen gebildet werden (Porenproteine, Tunnelproteine, Ionenkanäle)
Wovon hängt es ab, ob ein Ion den Ionenkanal passieren kann?
Das hängt von seiner Ladung und vor allem von seiner Größe im hydratisierten Zustand ab
Können organische Anionen durch die Zellmembran durchdringen?
Nein, sie werden von der Zellmembran zurückgehalten
Welche Ionen können die Membran in geringem Umfang passieren?
Natrium- und Chloridionen
Du hast bereits ein Konto? Anmelden
Open in AppDie erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.
Melde dich an für Notizen & Bearbeitung. 100% for free.
Speichere Erklärungen in deinem persönlichen Bereich und greife jederzeit und überall auf sie zu!
Mit E-Mail registrieren Mit Apple registrierenDurch deine Registrierung stimmst du den AGBs und der Datenschutzerklärung von StudySmarter zu.
Du hast schon einen Account? Anmelden