StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
Americas
Europe
Bevor du auf diesen Artikel geklickt hast, wurde ein entsprechendes Signal in deinem Gehirn erstellt. Das reicht aber nicht, um deinen Finger zu bewegen, denn dieses elektrische Signal muss ja noch im Finger ankommen. Und genau das wird durch die Erregungsleitung über Axone gewährleistet. Darunter versteht man nämlich die Weiterleitung einer Erregung in Form elektrischer Signale in Nerven- und Muskelzellen.Der…
Entdecke über 200 Millionen kostenlose Materialien in unserer App
Speicher die Erklärung jetzt ab und lies sie, wenn Du Zeit hast.
SpeichernLerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmeldenBevor du auf diesen Artikel geklickt hast, wurde ein entsprechendes Signal in deinem Gehirn erstellt. Das reicht aber nicht, um deinen Finger zu bewegen, denn dieses elektrische Signal muss ja noch im Finger ankommen. Und genau das wird durch die Erregungsleitung über Axone gewährleistet. Darunter versteht man nämlich die Weiterleitung einer Erregung in Form elektrischer Signale in Nerven- und Muskelzellen.
Der Befehl vom Gehirn "Klick auf die Maus!" wird in einem Neuron als elektrisches Signal bzw. genauer als Aktionspotenzial am Axonhügel losgeschickt und entlang des Axons bis zum Finger weitergeleitet.
Je nach Art und Ablauf unterscheidet man zwei Formen der Erregungsübertragung: Die saltatorische und kontinuierliche Erregungsleitung.
Inspiration für den nächsten Befehl deines Gehirns: Unser Artikel zum Aktionspotenzial.
Abbildung 1: Erregungsübertragung im Neuron
Nervenfasern ohne Myelinisierung, also marklose Neurone, leiten Erregungen kontinuierlich weiter. Das heißt, dass das Aktionspotenzial über ständiges Ausgleichen von Ladungsunterschieden zwischen schon erregten und noch nicht erregten Membranstellen weitergeleitet wird.
Die kontinuierliche Erregungsleitung beschreibt die Weiterleitung von Reizen über das Axon durch eine unterbrechungsfreie, also kontinuierliche Auslösung eines Aktionspotentials.
Es entstehen also immer wieder neue Aktionspotenziale, die sich Richtung Axonendknöpfchen ausbreiten. So bleibt das Signal immer gleich stark.
Diese Art der Erregungsleitung findet man vorwiegend in wirbellosen Tieren, wie Tintenfischen oder Regenwürmern.
Die kontinuierliche Erregungsleitung erfolgt in mehreren Schritten. Dabei muss zunächst ein Aktionspotential ausgelöst werden. Dieses kann dann weitergeleitet werden.
Der Befehl "Klick auf die Maus!" soll vom Neuron im Gehirn auf die Reise zur Muskelzelle deines Fingers geschickt werden. Dafür muss die Erregung stark genug sein, um am Axonhügel der Gehirn-Nervenzelle das Schwellenpotenzial von – 40 bis – 50 mV zu erreichen. Nun findet eine Potenzialumkehr statt.
Eine Potenzialumkehr beschreibt den Moment, in dem sich Ionenkanäle in der Membran öffnen und das sonst negative Membranruhepotential des Axons positiv wird (bis ca. + 30 mV). Dadurch entsteht ein Aktionspotenzial.
Durch die Bildung des Aktionspotenzials entsteht ein depolarisierter Membranabschnitt am Axon. Dieser Bereich weist ein positives Membranpotential auf. Es besteht also ein Ladungsunterschied zwischen diesem erregten Bereich und dem noch nicht erregten Abschnitt, an dessen Membran ein negatives Ruhepotential vorherrscht.
Dieser Ladungsunterschied führt dazu, dass Ionen zwischen den beiden Axonabschnitten fließen, um den Unterschied auszugleichen. Die Ausgleichs-Strömchen-Theorie (oder kurz Strömchen-Theorie) basiert auf der Annahme solcher ausgleichenden Ionen- oder Kreisströme.
Abbildung 2: Ablauf der kontinuierlichen Erregungsleitung
Durch die ausgleichenden Kreisströme beidseits der Membran werden Ionen von "axonabwärts", das heißt in Richtung des Axonendes, abgezogen. Die Membran beginnt zu depolarisieren. Wird dabei das Schwellenpotential erreicht, öffnen sich auch in diesem Bereich die Na+-Kanäle und ein neues Aktionspotenzial entsteht. Das neu gebildete Aktionspotenzial hat genau die gleiche Dauer (2 ms), Stärke (ca. 100 mV) und Form des vorangegangenen Aktionspotenzials.
Dieser Vorgang wiederholt sich, bis das Ende des Axons erreicht ist. Damit ist jedes Aktionspotenzial der Auslöser für das Entstehen neuer Aktionspotenziale an benachbarten Membranstellen. So wird die Erregung, mittels passiver Kreisströme und ständiger Neuentstehung von Aktionspotenzialen, ohne Abschwächung, das ganze Axon entlang weitergeleitet.
Wenn die ständig neu gebildeten Aktionspotenziale durch Ionenströme entstehen, warum werden sie immer in Richtung Axonendköpfchen geleitet? Warum fließen sie nicht rückwärts?
Das liegt an der sogenannten Refraktärzeit: Nach Ablauf eines Aktionspotenzials ist die Membran für kurze Zeit unerregbar (absolute Refraktärphase), da sich die spannungsgesteuerten Natriumkanäle erst regenerieren müssen. Auch bei überschwelligen Reizen wird dann kein neues Aktionspotential ausgelöst. Das führt dazu, dass das Aktionspotenzial nur sich bloß auf erregbare Membranabschnitte ausbreiten kann. Außerdem wird so die Dauer des Aktionspotenzials begrenzt.
Abbildung 3: Gerichtete Informationsweiterleitung
Es gibt einige Faktoren, die die Geschwindigkeit der Erregungsleitung beeinflussen:
Tintenfische haben, wie erwähnt, marklose Axone. Trotzdem soll die eher langsame, kontinuierliche Erregungsleitung so schnell wie möglich ablaufen. Auf die Temperatur hat der Tintenfisch leider keinen Einfluss. Das heißt, der einzige Weg, die Erregungsübertragung in marklosen Axonen zu beschleunigen, ist, den Faserdurchmesser zu vergrößern.
Das hat die Evolution tatsächlich auch umgesetzt, sodass man in Tintenfischen sogenannte Riesenaxone mit einem Durchmesser von bis zu 1 Millimeter findet.
In der folgenden Tabelle siehst du die Merkmale der beiden Erregungsübertragungsformen, sodass du sie auf einem Blick vergleichen kannst:
Kontinuierliche Erregungsleitung | Saltatorische Erregungsleitung | |
Myelin-Ummantelung | nicht vorhanden = marklos | vorhanden = markhaltig |
Erregungsübertragung | fortschreitend | sprunghaft |
Leitungsgeschwindigkeit | eher langsamv = 1 m/s bis maximal 25 m/s | eher schnellv = bis zu 120 m/s |
Axondurchmesser | eher groß (bis 1 mm) | eher klein |
Vorkommen | v. a. in wirbellosen Tieren | in Wirbeltieren fast ausschließlich |
Abbildung 4: Kontinuierliche vs. saltatorische Erregungsleitung
Fortschreitende, gerichtete Weiterleitung der elektrischen Erregung an marklosen Axonen.
Durch Ladungsunterschiede werden über Kreisströme ständig neue Aktionspotenziale gebildet➝ eher langsame Erregungsleitung.
Durch die Refraktärzeit wird die gerichtete Weiterleitung von Informationen ermöglicht.
Die Geschwindigkeit der Erregungsleitung wird beeinflusst durch:
Durchmesser der Nervenfaser
Temperatur.
Neben der kontinuierlichen Erregungsleitung existiert auch die saltatorische Erregungsleitung.
Bei der kontinuierlichen Erregungsleitung werden ständig neue Aktionspotenziale (AP) gebildet, sodass es dauert bis das AP am Axonende angekommen ist. Währenddessen ist die Übertragung bei der saltatorischen Erregungsleitung sprunghaft, das AP "springt" von Schnürring zu Schnürring, sodass die Weiterleitung schneller abläuft.
Die kontinuierliche Erregungsleitung ist eine fortschreitende und gerichtete Weiterleitung elektrischer Signale an marklosen Axonen. Sie kommt v. a. bei wirbellosen Tieren vor und ist eher langsam.
Die Erregungsleitung ist schneller, wenn das Axon myelinisiert ist, einen großen Innendurchmesser hat und optimale Temperaturen herrschen.
Das Neuron selbst sollte myelinisiert sein und einen großen Innendurchmesser besitzen für eine möglichst schnelle Erregungsleitung. Außerhalb des Neurons sollten weiterhin optimale Temperaturen herrschen.
der Nutzer schaffen das Kontinuierliche Erregungsleitung Quiz nicht! Kannst du es schaffen?
Quiz startenWie möchtest du den Inhalt lernen?
Wie möchtest du den Inhalt lernen?
Kostenloser biologie Spickzettel
Alles was du zu . wissen musst. Perfekt zusammengefasst, sodass du es dir leicht merken kannst!
Sei rechtzeitig vorbereitet für deine Prüfungen.
Teste dein Wissen mit spielerischen Quizzes.
Erstelle und finde Karteikarten in Rekordzeit.
Erstelle die schönsten Notizen schneller als je zuvor.
Hab all deine Lermaterialien an einem Ort.
Lade unzählige Dokumente hoch und habe sie immer dabei.
Kenne deine Schwächen und Stärken.
Ziele Setze dir individuelle Ziele und sammle Punkte.
Nie wieder prokrastinieren mit unseren Lernerinnerungen.
Sammle Punkte und erreiche neue Levels beim Lernen.
Lass dir Karteikarten automatisch erstellen.
Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.
Melde dich an für Notizen & Bearbeitung. 100% for free.
Speichere Erklärungen in deinem persönlichen Bereich und greife jederzeit und überall auf sie zu!
Mit E-Mail registrieren Mit Apple registrierenDurch deine Registrierung stimmst du den AGBs und der Datenschutzerklärung von StudySmarter zu.
Du hast schon einen Account? Anmelden