Login Anmelden

Select your language

Suggested languages for you:

Select your language

Suggested languages for you:
StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
|
|

Kontinuierliche Erregungsleitung

Kontinuierliche Erregungsleitung

Bevor du auf diesen Artikel geklickt hast, wurde ein entsprechendes Signal in deinem Gehirn erstellt. Das reicht aber nicht, um deinen Finger zu bewegen, denn dieses elektrische Signal muss ja noch im Finger ankommen. Und genau das wird durch die Erregungsleitung über Axone gewährleistet. Darunter versteht man nämlich die Weiterleitung einer Erregung in Form elektrischer Signale in Nerven- und Muskelzellen.

Der Befehl vom Gehirn "Klick auf die Maus!" wird in einem Neuron als elektrisches Signal bzw. genauer als Aktionspotenzial am Axonhügel losgeschickt und entlang des Axons bis zum Finger weitergeleitet.

Je nach Art und Ablauf unterscheidet man zwei Formen der Erregungsübertragung: Die saltatorische und kontinuierliche Erregungsleitung.

Inspiration für den nächsten Befehl deines Gehirns: Unser Artikel zum Aktionspotenzial.

Kontinuierliche Erregungsleitung Erregungsübertragung im Neuron StudySmarterAbbildung 1: Erregungsübertragung im Neuron

Kontinuierliche Erregungsleitung – Definition

Nervenfasern ohne Myelinisierung, also marklose Neurone, leiten Erregungen kontinuierlich weiter. Das heißt, dass das Aktionspotenzial über ständiges Ausgleichen von Ladungsunterschieden zwischen schon erregten und noch nicht erregten Membranstellen weitergeleitet wird.

Die kontinuierliche Erregungsleitung beschreibt die Weiterleitung von Reizen über das Axon durch eine unterbrechungsfreie, also kontinuierliche Auslösung eines Aktionspotentials.

Es entstehen also immer wieder neue Aktionspotenziale, die sich Richtung Axonendknöpfchen ausbreiten. So bleibt das Signal immer gleich stark.

Diese Art der Erregungsleitung findet man vorwiegend in wirbellosen Tieren, wie Tintenfischen oder Regenwürmern.

Kontinuierliche Erregungsleitung – Ablauf

Die kontinuierliche Erregungsleitung erfolgt in mehreren Schritten. Dabei muss zunächst ein Aktionspotential ausgelöst werden. Dieses kann dann weitergeleitet werden.

Auslösung des Aktionspotenzials

Der Befehl "Klick auf die Maus!" soll vom Neuron im Gehirn auf die Reise zur Muskelzelle deines Fingers geschickt werden. Dafür muss die Erregung stark genug sein, um am Axonhügel der Gehirn-Nervenzelle das Schwellenpotenzial von – 40 bis – 50 mV zu erreichen. Nun findet eine Potenzialumkehr statt.

Eine Potenzialumkehr beschreibt den Moment, in dem sich Ionenkanäle in der Membran öffnen und das sonst negative Membranruhepotential des Axons positiv wird (bis ca. + 30 mV). Dadurch entsteht ein Aktionspotenzial.

Weiterleitung der Erregung

Durch die Bildung des Aktionspotenzials entsteht ein depolarisierter Membranabschnitt am Axon. Dieser Bereich weist ein positives Membranpotential auf. Es besteht also ein Ladungsunterschied zwischen diesem erregten Bereich und dem noch nicht erregten Abschnitt, an dessen Membran ein negatives Ruhepotential vorherrscht.

Dieser Ladungsunterschied führt dazu, dass Ionen zwischen den beiden Axonabschnitten fließen, um den Unterschied auszugleichen. Die Ausgleichs-Strömchen-Theorie (oder kurz Strömchen-Theorie) basiert auf der Annahme solcher ausgleichenden Ionen- oder Kreisströme.

Kontinuierliche Erregungsleitung Ablauf der Erregungsleitung StudySmarterAbbildung 2: Ablauf der kontinuierlichen Erregungsleitung

Durch die ausgleichenden Kreisströme beidseits der Membran werden Ionen von "axonabwärts", das heißt in Richtung des Axonendes, abgezogen. Die Membran beginnt zu depolarisieren. Wird dabei das Schwellenpotential erreicht, öffnen sich auch in diesem Bereich die Na+-Kanäle und ein neues Aktionspotenzial entsteht. Das neu gebildete Aktionspotenzial hat genau die gleiche Dauer (2 ms), Stärke (ca. 100 mV) und Form des vorangegangenen Aktionspotenzials.

Dieser Vorgang wiederholt sich, bis das Ende des Axons erreicht ist. Damit ist jedes Aktionspotenzial der Auslöser für das Entstehen neuer Aktionspotenziale an benachbarten Membranstellen. So wird die Erregung, mittels passiver Kreisströme und ständiger Neuentstehung von Aktionspotenzialen, ohne Abschwächung, das ganze Axon entlang weitergeleitet.

Gerichtete Erregungsleitung am Axon

Wenn die ständig neu gebildeten Aktionspotenziale durch Ionenströme entstehen, warum werden sie immer in Richtung Axonendköpfchen geleitet? Warum fließen sie nicht rückwärts?

Das liegt an der sogenannten Refraktärzeit: Nach Ablauf eines Aktionspotenzials ist die Membran für kurze Zeit unerregbar (absolute Refraktärphase), da sich die spannungsgesteuerten Natriumkanäle erst regenerieren müssen. Auch bei überschwelligen Reizen wird dann kein neues Aktionspotential ausgelöst. Das führt dazu, dass das Aktionspotenzial nur sich bloß auf erregbare Membranabschnitte ausbreiten kann. Außerdem wird so die Dauer des Aktionspotenzials begrenzt.

Kontinuierliche Erregungsleitung gerichtete Informationsweiterleitung StudySmarterAbbildung 3: Gerichtete Informationsweiterleitung

Einflussfaktoren der Erregungsleitung

Es gibt einige Faktoren, die die Geschwindigkeit der Erregungsleitung beeinflussen:

  • Myelinisierung: An marklosen Axonen kommt es zu kontinuierlichen Erregungsübertragungen. Da hier ständig neue Aktionspotenziale hergestellt werden, dauert es länger, bis das elektrische Signal am Ende des Axons angekommen ist. Dem gegenüber läuft an markhaltigen, also myelinisierten Axonen die schnellere saltatorische Erregungsleitung ab.
  • Faserdurchmesser: Je größer der Nervenfaserdurchmesser, umso größer die Leitungsgeschwindigkeit. Ein größerer Faserdurchmesser hat nämlich einen geringeren Innenwiderstand zur Folge. Das kannst du dir vorstellen, wie bei einer Tür: Je breiter sie ist, desto mehr Menschen passen gleichzeitig hindurch.
  • Temperatur: Für die Erregungsleitung gibt es auch einen optimalen Temperaturbereich. Im Rahmen physiologischer, also tatsächlich im Körper vorkommender Temperaturen, hat eine Temperaturerhöhung um 1 °C eine Steigerung der Leitungsgeschwindigkeit um 1 - 2 zur Folge. Unendlich lässt sich die Geschwindigkeit natürlich nicht steigern.

Tintenfische haben, wie erwähnt, marklose Axone. Trotzdem soll die eher langsame, kontinuierliche Erregungsleitung so schnell wie möglich ablaufen. Auf die Temperatur hat der Tintenfisch leider keinen Einfluss. Das heißt, der einzige Weg, die Erregungsübertragung in marklosen Axonen zu beschleunigen, ist, den Faserdurchmesser zu vergrößern.

Das hat die Evolution tatsächlich auch umgesetzt, sodass man in Tintenfischen sogenannte Riesenaxone mit einem Durchmesser von bis zu 1 Millimeter findet.

Kontinuierliche vs. saltatorische Erregungsleitung

In der folgenden Tabelle siehst du die Merkmale der beiden Erregungsübertragungsformen, sodass du sie auf einem Blick vergleichen kannst:

Kontinuierliche ErregungsleitungSaltatorische Erregungsleitung
Myelin-Ummantelungnicht vorhanden = marklosvorhanden = markhaltig
Erregungsübertragungfortschreitendsprunghaft
Leitungsgeschwindigkeiteher langsamv = 1 m/s bis maximal 25 m/seher schnellv = bis zu 120 m/s
Axondurchmessereher groß (bis 1 mm)eher klein
Vorkommenv. a. in wirbellosen Tierenin Wirbeltieren fast ausschließlich

Kontinuierliche Erregungsleitung vs kontinuierliche vs saltatorische Erregungsleitung StudySmarterAbbildung 4: Kontinuierliche vs. saltatorische Erregungsleitung

Kontinuierliche Erregungsleitung – Das Wichtigste

  • Fortschreitende, gerichtete Weiterleitung der elektrischen Erregung an marklosen Axonen.

  • Durch Ladungsunterschiede werden über Kreisströme ständig neue Aktionspotenziale gebildet➝ eher langsame Erregungsleitung.

  • Durch die Refraktärzeit wird die gerichtete Weiterleitung von Informationen ermöglicht.

  • Die Geschwindigkeit der Erregungsleitung wird beeinflusst durch:

    • Myelinisierung des Axons
    • Durchmesser der Nervenfaser

    • Temperatur.

  • Neben der kontinuierlichen Erregungsleitung existiert auch die saltatorische Erregungsleitung.

Häufig gestellte Fragen zum Thema Kontinuierliche Erregungsleitung

Bei der kontinuierlichen Erregungsleitung werden ständig neue Aktionspotenziale (AP) gebildet, sodass es dauert bis das AP am Axonende angekommen ist. Währenddessen ist die Übertragung bei der saltatorischen Erregungsleitung sprunghaft, das AP "springt" von Schnürring zu Schnürring, sodass die Weiterleitung schneller abläuft.

Die kontinuierliche Erregungsleitung ist eine fortschreitende und gerichtete Weiterleitung elektrischer Signale an marklosen Axonen. Sie kommt v. a. bei wirbellosen Tieren vor und ist eher langsam.

Die Erregungsleitung ist schneller, wenn das Axon myelinisiert ist, einen großen Innendurchmesser hat und optimale Temperaturen herrschen.

Das Neuron selbst sollte myelinisiert sein und einen großen Innendurchmesser besitzen für eine möglichst schnelle Erregungsleitung. Außerhalb des Neurons sollten weiterhin optimale Temperaturen herrschen.

Finales Kontinuierliche Erregungsleitung Quiz

Frage

Wo im Körper werden elektrische Signale generiert, die zu einer Bewegung führen?

Antwort anzeigen

Antwort

Sie werden in den Neuronen des Gehirns erzeugt.

Frage anzeigen

Frage

Wodurch werden Erregungen kontinuierlich weitergeleitet?

Antwort anzeigen

Antwort

Durch Nervenfasern ohne Myelinisierung (marklose Neurone) werden Erregungen kontinuierlich weitergeleitet.

Frage anzeigen

Frage

Wo findet die Signalweiterleitung statt?

Antwort anzeigen

Antwort

Vom Axonstartknöpchen zum Axonhügel

Frage anzeigen

Frage

Nenne die drei Schritte der kontinuierlichen Erregungsleitung.

Antwort anzeigen

Antwort

  • Auslösung des Aktionspotenzials
  • Weiterleitung der Erregung
  • Gerichtete Erregungsleitung am Axon

Frage anzeigen

Frage

Welches Schwellenpotenzial muss erreicht werden, damit eine Potenzialumkehr stattfindet?

Antwort anzeigen

Antwort

-40 bis -50 mV

Frage anzeigen

Frage

Welches Potenzial entsteht am Axon nach der Potenzialumkehr?

Antwort anzeigen

Antwort

30 mV

Frage anzeigen

Frage

Was hat der Ladungsunterschied zwischen erregtem und nicht erregtem Bereich zur Folge?

Antwort anzeigen

Antwort

Ionen fließen zwischen den beiden Axonabschnitten, um den Unterschied auszugleichen. Der Ladungsunterschied "fließt" in Richtung des Axonendes.

Frage anzeigen

Frage

Wodurch verändert sich das Membranpotenzial?

Antwort anzeigen

Antwort

Natriumkanäle öffnen sich und die herausströmenden, positiven Natrium-Ionen erhöhen das Potenzial.

Frage anzeigen

Frage

Die ... ist dafür zuständig, dass Aktionspotenziale immer in eine Richtung entlang des Axons fließen und die Richtung nicht mittendrin wechseln.

Antwort anzeigen

Antwort

Refraktärzeit

Frage anzeigen

Frage

Was ist die Refraktärzeit?

Antwort anzeigen

Antwort

Regenerierungszeit der Natriumkanäle

Frage anzeigen

Frage

Welche der folgenden Erregungsleitungen läuft schneller ab?

Antwort anzeigen

Antwort

saltatorische Erregungsleitung

Frage anzeigen

Frage

Je dicker die Nervenfaser, desto ... die Leitungsgeschwindigkeit.

Antwort anzeigen

Antwort

höher

Frage anzeigen

Frage

In einem gewissen Rahmen führt eine ... Temperatur zu einer schnelleren Leitungsgeschwindigkeit.

Antwort anzeigen

Antwort

höhere

Frage anzeigen

Frage

Welche Tiere sind dafür bekannt, sichtbare Axone zu haben?

Antwort anzeigen

Antwort

Tintenfische

Frage anzeigen

Frage

In welchen Tieren findet die kontinuierliche Erregungsleitung statt?

Antwort anzeigen

Antwort

wirbellose Tiere

Frage anzeigen

Mehr zum Thema Kontinuierliche Erregungsleitung
60%

der Nutzer schaffen das Kontinuierliche Erregungsleitung Quiz nicht! Kannst du es schaffen?

Quiz starten

Finde passende Lernmaterialien für deine Fächer

Alles was du für deinen Lernerfolg brauchst - in einer App!

Lernplan

Sei rechtzeitig vorbereitet für deine Prüfungen.

Quizzes

Teste dein Wissen mit spielerischen Quizzes.

Karteikarten

Erstelle und finde Karteikarten in Rekordzeit.

Notizen

Erstelle die schönsten Notizen schneller als je zuvor.

Lern-Sets

Hab all deine Lermaterialien an einem Ort.

Dokumente

Lade unzählige Dokumente hoch und habe sie immer dabei.

Lern Statistiken

Kenne deine Schwächen und Stärken.

Wöchentliche

Ziele Setze dir individuelle Ziele und sammle Punkte.

Smart Reminders

Nie wieder prokrastinieren mit unseren Lernerinnerungen.

Trophäen

Sammle Punkte und erreiche neue Levels beim Lernen.

Magic Marker

Lass dir Karteikarten automatisch erstellen.

Smartes Formatieren

Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.

Melde dich an für Notizen & Bearbeitung. 100% for free.

Get FREE ACCESS to all of our study material, tailor-made!

Over 10 million students from across the world are already learning smarter.

Get Started for Free
Illustration