Kortikale Plastizität Definition
Um den Begriff kortikale Plastizität zu verstehen, wollen wir ihn zunächst in seine Einzelteile zerlegen. Kortikal bezeichnet hierbei “den Kortex (Hirnrinde) betreffend”. Der Begriff Plastizität bedeutet Formbarkeit, also die Fähigkeit sich je nach vorliegenden Bedingungen mit strukturellen und funktionellen Veränderungen zu reagieren.
Setzt man die Bedeutungen der einzelnen Begriffe nun zusammen und mit dem Gehirn in Bezug, ergibt sich folgende Definition für kortikale Plastizität.
Unter kortikale Plastizität versteht man die Formbarkeit von Größe, Verbindungen oder den Aktivierungsschemata von kortikalen Netzwerken.
Der Begriff wird häufig in Bezug auf das gesamte Gehirn genutzt und bezieht hiermit auch nicht kortikale Areale ein. Die Prinzipien der kortikalen Plastizität sind nämlich nicht allein auf kortikale Areale begrenzt, sondern lassen sich auf andere Areale ausweiten. Das liegt daran, dass die Plastizität des Gehirns zur Folge hat, dass gewisse Funktionen im Gehirn von einem Ort zum anderen wandern können.
Der Kortex
Was genau ist der Kortex bzw. die Hirnrinde? Betrachten wir dies nochmal genauer.
Die Hirnrinde, auch Kortex oder Hirnmantel genannt, bezeichnet eine Ansammlung von Nervenzellen, die sich als Hirnrinde an der äußersten Schicht von Groß- (cortex cerebri) und Kleinhirn (cortex cerebelli) befindet.
Cortex cerebri
Der Cortex cerebri, auch Großhirnrinde genannt, übernimmt wesentliche Aufgaben bei der Sinneswahrnehmung und macht etwa die Hälfte des Hirnvolumens aus. Aufgrund der hohen Anzahl an Nervenzellen – insbesondere der Zellkörper der Neuronen –, die der Hirnrinde eine graue Farbe verleihen, wird sie auch als graue Substanz (substantia grisea) bezeichnet.
Die tieferen Hirnareale enthalten eine weiße Substanz, auch substantia alba genannt. Der aus den Fortsätzen der Neuronen (Axone) besteht. Die graue und weiße Substanz umhüllen die Gehirnventrikel.
Doch was sind Neuronen? Neurone, auch Nervenzellen genannt, sind elektrisch erregbare Zellen, die der Reizweiterleitung dienen.
Eine Nervenzelle besteht grob aus drei Zellabschnitten:
- Dendriten (kurze Fortsätze): Als Dendriten werden die kurzen, verästelten Fortsätze eines Neurons bezeichnet.
- Axon (langer Fortsatz): Das Axon beschreibt den Fortsatz einer Nervenzelle, der Informationen in Form von elektrischen Impulsen vom Soma wegleitet.
- Endknöpfchen (Synapse): An das Axon schließen die Synapsen an. Ihre Aufgabe liegt darin, die neuronale Erregung an die darauffolgende Zelle weiterzuleiten.

Die Großhirnrinde kann grob in vier bis sechs Lappen (Lobi) unterteilt werden, die jeweils spezifische Aufgaben haben. Die verschiedenen Gehirnabschnitte arbeiten miteinander, um komplexe Funktionen und Verhaltensmuster auszuüben. Zu den Funktionen gehören bspw. das Sprechen, Sehen, Schmecken und Bewegungen.
Genauer:
Der Temporallappen (Lobus temporalis) ist zuständig für Gehör, Geruch und Sprache.
Der Frontallappen (Lobus frontalis) wird bei der Bewegung, beim Denken und der Sprache aktiv.
Der Parietallappen (Lobus parietalis) ist zuständig für das Schmecken und den Tastsinn.
Der Okzipitallappen (Lobus occipitalis) ist für das Sehen relevant.
Die Großhirnrinde spielt darüber hinaus eine wichtige Rolle bei der Speicherung von Informationen und macht somit eine wichtige Komponente unseres Gedächtnisses aus.
Kortikale Karten
Das Gehirn muss sich in verschiedenen Situationen anpassen, so auch bei einem Unfall oder bei Verletzungen. Dies stellt zwar eine sehr extreme Situation dar, soll Dir aber die Idee der kortikalen Plastizität und der kortikalen Karten näher bringen.
Nehmen wir Sinneseindrücke wahr, wie eine Berührung am Arm, verläuft dieser Reiz an einer Stelle des Kortex. Wird eine andere Stelle am Körper berührt, findet sich der Reiz an einer anderen Stelle im Kortex wieder. So lässt sich jeder Körperregion ein Nervenzellareal im Gehirn zuordnen. Man spricht von der sog. Somatopie. Du kannst Dir das wie eine Karte des Körpers im Kortex vorstellen. Deshalb spricht man auch von kortikalen Karten.
Unter Somatopie versteht man die Abbildung der Körperregionen auf Nervenzellareale im Gehirn.
Wichtig hierbei ist, dass diese Zuordnungen bzw. die Karten nicht “in Stein gemeißelt”, sondern plastisch sind. Studien haben bspw. gezeigt, dass gezieltes Training oder das Fehlen einer Übung die kortikale Karten verändern kann.
Tägliche Klavierfingerübungen zeigten bereits nach einer Woche eine Veränderung der anatomischen Struktur, die für die Kontrolle der Fertigkeit zuständig ist. Eine Immobilisation z. B. aufgrund eines Bruchs führte hingegen zu einer Reduktion der kortikalen Dicke.
Kommt es nun aufgrund eines Unfalls bspw. zu einer Amputation, also der Entfernung eines Körperteils, ändern sich infolgedessen die kortikalen Karten. Doch wie passiert das?
Reorganisation der kortikalen Karten
Die kortikalen Karten adaptieren sich, je nach ihrer Eingabe. Als Eingabe sind die Reize gemeint, die vom Körper ausgehen. Bei einem amputierten Bein bekommt das kortikale Feld zunächst keine Eingabe mehr. Dies wird als Deafferentierung bezeichnet und führt dazu, dass in der Folge das kortikale Feld, welches bisher für das Bein zuständig war, jetzt von benachbarten kortikalen Feldern “übernommen” wird.
Im Zuge dieser Reorganisation kann es zu folgendem Phänomen kommen: sind die benachbarten kortikalen Felder bspw. das Gesicht und der rechte Arm, so kann es bei der Empfindung einer Träne im Gesicht zur gleichzeitigen Empfindung am Arm kommen. Heißt: Man spürt die Träne sowohl am Gesicht als auch Arm.
Die Reorganisation geschieht, indem die benachbarten kortikalen Felder um das Feld dazwischen “konkurrieren”. Hierbei kann es noch zu Phantom-Empfindungen kommen. Dazu gehören Schmerzen und andere Empfindungen im Körperteil, welches durch die Amputation nicht mehr vorhanden ist.
Die Empfindungen des Phantoms werden ebenso im Laufe der Zeit kleiner oder kürzer. Dies erklärt sich dadurch, dass das entsprechende kortikale Feld kleiner wird. In den Nachbararealen, die jetzt mehr kortikale Fläche zur Verfügung haben, kann es sogar zu detaillierteren Empfindungen kommen.
Mittels Studien an Affen wurde festgestellt, dass sich der Kortex, der der Wahrnehmung dient – sog. somatosensorische Kortex –, sich infolge einer Fingeramputation verändert. Nach zwei Monaten wurde beobachtet, dass die kortikale Repräsentation des Fingers zurückgegangen ist und die der benachbarten Finger sich erweitert hatte.
Diese Studien heben außerdem die Wichtigkeit von körperlicher Aktivität aus Sicht der kortikalen Plastizität hervor.