Jump to a key chapter
Ampholyte – Definition
Ein Ampholyt ist demzufolge eine Substanz, die beides kann und sowohl als Säure als auch als Base reagiert. Je nach Reaktionspartner können Protonen gegeben oder akzeptiert werden. Bedingung dafür ist, dass sie mindestens ein H-Atom besitzen und entsprechend auch ein H-Atom aufnehmen können.
Ampholyte sind Substanzen, die je nach Reaktionspartner als Protonendonator als auch als Protonenakzeptor dienen. Dieses Verhalten ist die sogenannte Amphoterie.
Ein weiterer Begriff, dem du begegnen könntest, ist amphoter. Dieser Begriff definiert Stoffe, die abhängig von ihrem Reaktionsmilieu oder -partner auf unterschiedliche Art reagieren können. Ampholyte sind Säure-Base-Amphotere – sie reagieren als Säuren oder als Basen.
Daneben gibt es auch Redox-Amphotere. Sie können entweder oxidierend oder reduzierend wirken. Auch in der Halbleitertechnik gibt es Amphotere. Hier wirken die Dotanden (Fremdatome) entweder als Elektronenakzeptor oder -donator.
Überblick Brönsted-Lowrey Theorie
Mithilfe der Brönsted-Lowrey Theorie kann man Ampholyte besser verstehen. Die Theorie beinhaltet das Konzept des konjugierten Säure-Base-Paares.
Eine Säure und eine Base, die sich um ein Proton unterscheiden, sind ein konjugiertes Säure-Base-Paar.
Ist in diesem Fall die Säure sehr stark, ist die konjugierte Base eher schwach. Das Gleiche gilt auch umgekehrt, wenn die Base sehr stark ist. In dieser Situation ist die Säure schwach. Die Summe der dazugehörigen pKS- und pKB-Werte eines konjugierten Säure-Base-Paares ergibt stets 14.
Bei dem pKs-Wert handelt es sich um die Säurekonstante. Die Zahl selbst ist einheitslos und kann mittels Massenwirkungsgesetzes bestimmt werden. Sie gibt an, wie stark eine Säure ist. Analog dazu ist pKB-Wert die Basekonstante. Diese gibt an, wie stark eine Base ist.
Konjugierte Säure-Base-Paare und Ampholyte
Das bekannteste Beispiel für Ampholyte ist Wasser. Das heißt also, dass Wasser sowohl eine Säure als auch eine Base sein kann. Wie in der Einleitung erwähnt, kann Wasser – je nach Reaktionspartner – entweder zu H3O+ oder OH- reagieren.
Wasser reagiert mit einer Säure
Nimm dafür einmal an, zu Wasser wird Salzsäure hinzugegeben. Die Salzsäure gibt ein Proton an das Wassermolekül ab. So liegen nun Oxonium-Ionen (H3O+) und Chlorionen (Cl-) vor. Die Salzsäure fungiert hier als Protonendonator und das Wasser als Protonenakzeptor. Dabei ist HCl und Cl- ein konjugiertes Säure-Base-Paar und H2O und H3O+ das zweite konjugierte Säure-Base-Paar.
Wasser reagiert mit einer Base
Ist der Reaktionspartner nun Ammoniak, gibt das Wasser ein Proton ab und Ammoniak nimmt dieses auf. Im Vergleich zur Reaktion mit HCl ist hier das Wasser die Säure und Ammoniak die Base. Hier sind die konjugierten Säure-Base-Paare H2O/OH- und NH3/NH4+.
Autoprotolyse
Zu Beginn hast du kurz von der Autoprotolyse gehört. Dafür siehst du hier die Reaktionsgleichung. Wasser reagiert mit sich selbst. Ein Wassermolekül dient als Protonendonator und ein zweites als Protonenakzeptor. Das konjugierte Säure-Base-Paar besteht einmal aus Wasser und Oxonium-Ionen, während das zweite ebenfalls aus Wasser und dieses Mal dem Hydroxid-Ion besteht.
Weitere Beispiele von Ampholyten
Wasser ist jedoch nicht das einzige Molekül, das diese Besonderheit aufweist. Ein weiteres Molekül hast du mit Ammoniak schon kennengelernt. Weitere Beispiele lernst du nun kennen.
Hydrogencarbonat als Ampholyt
Neben Wasser sind auch Salze wie Hydrogencarbonat (HCO3-) Ampholyte. Reagiert HCO3- mit Wasser entsteht Kohlensäure (H2CO3) und ein Hydroxidion:
Das Wasser wirkt hier als Säure und gibt ein Proton ab, während HCO3- eine Base ist und das Proton bindet.
Reagiert HCO3- allerdings mit Ammoniak entstehen CO32- und NH4+. Hier gibt HCO3- ein Proton an Ammoniak ab und wirkt als Säure.
Dihydrogenphosphat als Ampholyt
Dihydrogenphosphat ist eine einfach deprotonierte mehrprotonige Säure. Sie besitzt also ursprünglich mehrere Protonen. Bei einer Reaktion mit einer Säure ist es ein Protonenakzeptor und reagiert somit als Base.
Bei einer Reaktion mit einer Base ist es ein Protonendonator und reagiert somit als Säure.
Aminosäuren als Ampholyt
Aminosäuren besitzen sowohl eine saure Carboxygruppe (–COOH), als auch eine basische Aminogruppe (–NH2). Am Beispiel der einfachsten Aminosäure Glycin kann man die Amphoterie der Aminosäuren verdeutlichen.
In Reaktion mit Säuren fungiert die Aminogruppe als Protonenakzeptor und somit reagiert Glycin als Base.
Wenn die Aminosäure mit einer Base reagiert, gibt die Carboxygruppe das Proton ab und Glycin reagiert als Säure.
Diese Eigenschaft von Aminosäuren – den Bausteinen der Proteine – kannst du dir bei dem biochemischen Trennverfahren isoelektrische Fokussierung zunutze machen und Proteine mittels Gelelektrophorese nach ihrem isoelektrischen Punkt (pI) auftrennen.
Hierbei hast du ein Gel mit einem pH-Gradienten. Dieses Gel wird mit einem Proteingemisch beladen und in ein elektrisches Feld eingebracht. Durch das Feld wandern die Proteine im Gel: Bei niedrigem pH nehmen die Carboxygruppen Protonen auf und wandern zur negativen Elektrode. Bei einem basischen pH geben die Aminogruppen Protonen ab.
Am sogenannten pI gibt es dann so viele positive wie negative Ladungen. Damit ist das Protein neutral und läuft nicht weiter durch das Gel. Jede Aminosäure - und damit jedes Protein hat einen spezifischen pI.
Ampholyte - Das Wichtigste
- Ampholyte sind chemische Verbindungen, die sowohl als Säure als auch als Base reagieren können.
- Amphoterie ist das Verhalten, unterschiedlich reagieren zu können.
- Wasser ist ein sehr bekannter Ampholyt. Mit Säuren reagiert es als Base, mit Basen reagiert es als Säure.
- Bei der Autoprotolyse des Wassers dient ein Wassermolekül als Protonenakzeptor und ein weiteres als Protonendonator.
- Bei Aminosäuren dient die Aminogruppe im Sauren als Protonenakzeptor und die Carboxygruppe im Basischen als Protonendonator, somit sind Aminosäuren Ampholyte.
Lerne mit 0 Ampholyte Karteikarten in der kostenlosen StudySmarter App
Wir haben 14,000 Karteikarten über dynamische Landschaften.
Du hast bereits ein Konto? Anmelden
Häufig gestellte Fragen zum Thema Ampholyte
Welche Ampholyte gibt es?
Wasser ist das mit Abstand bekannteste Ampholyt. Daneben gibt es noch Ammoniak (NH3), Hydrogencarbonat (HCO3-), Dihydrogenphosphat (H2PO4-) und die Aminosäuren wie Glycin.
Woher weiß ich, ob es ein Ampholyt ist?
Ampholyte reagieren sowohl als Base als auch als Säure. Sie müssen dafür mindestens ein H-Atom besitzen, das sie abgeben können, aber auch mindestens ein H-Atom aufnehmen können. Sie sind also Protonenakzeptoren und Protonendonatoren gleichzeitig.
Welche Stoffe reagieren als Ampholyte?
Es reagieren vor allem einfach oder zweifach protonierte mehrprotonige Säuren als Ampholyte. Dazu zählen Hydrogencarbonat und Dihydrogenphosphat. Weitere Beispiele sind Wasser und Ammoniak. Alle sind in der Lage Protonen aufzunehmen, aber auch abzugeben.
Was ist ein Amphoter?
Als Amphoter bezeichnet man Stoffe, die gegensätzliche Reaktionen ausführen können, abhängig von ihrem Reaktionspartner. Säure-Base-Amphotere wie die Ampholyte reagieren als Säure und Base. Redox-Amphotere beispielsweise können reduzierend, aber auch oxidierend wirken.
Über StudySmarter
StudySmarter ist ein weltweit anerkanntes Bildungstechnologie-Unternehmen, das eine ganzheitliche Lernplattform für Schüler und Studenten aller Altersstufen und Bildungsniveaus bietet. Unsere Plattform unterstützt das Lernen in einer breiten Palette von Fächern, einschließlich MINT, Sozialwissenschaften und Sprachen, und hilft den Schülern auch, weltweit verschiedene Tests und Prüfungen wie GCSE, A Level, SAT, ACT, Abitur und mehr erfolgreich zu meistern. Wir bieten eine umfangreiche Bibliothek von Lernmaterialien, einschließlich interaktiver Karteikarten, umfassender Lehrbuchlösungen und detaillierter Erklärungen. Die fortschrittliche Technologie und Werkzeuge, die wir zur Verfügung stellen, helfen Schülern, ihre eigenen Lernmaterialien zu erstellen. Die Inhalte von StudySmarter sind nicht nur von Experten geprüft, sondern werden auch regelmäßig aktualisiert, um Genauigkeit und Relevanz zu gewährleisten.
Erfahre mehr