StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
Americas
Europe
Das Leben kann manchmal unfair sein. Die Stärkeren bekommen oftmals mehr als die Schwächeren. Das ist bei chemischen Bindungen nicht anders. Welche Atome schwach sind und welche stark und wie man das feststellen kann, erfährst Du im Laufe dieser Erklärung.Atome können auf unterschiedliche Art und Weise eine Verbindung eingehen. Manche…
Entdecke über 50 Millionen kostenlose Lernmaterialien in unserer App.
Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmeldenDas Leben kann manchmal unfair sein. Die Stärkeren bekommen oftmals mehr als die Schwächeren. Das ist bei chemischen Bindungen nicht anders. Welche Atome schwach sind und welche stark und wie man das feststellen kann, erfährst Du im Laufe dieser Erklärung.
Atome können auf unterschiedliche Art und Weise eine Verbindung eingehen. Manche Atome, wie Natrium und Chlor, gehen eine Ionenbindung ein. Dabei bildet sich das Salz Natriumchlorid (NaCl). Andere Atome, wie Wasserstoff und Kohlenstoff gehen eine Atombindung oder "kovalente Bindung" ein. Das Ergebnis davon ist Wasser (H2O). Um herauszufinden, um was für eine Bindung es sich bei anderen Atomverbindungen handelt, benötigst Du die Elektronegativität.
Die Elektronegativität gibt an, wie stark ein Element beziehungsweise ein Atom, Bindungselektronen zu sich ziehen kann.
Jedes Element hat eine bestimmte Elektronegativität (EN). Chemiker verwenden dafür auch gerne das Formelzeichen \(\chi\) (chi). Die Elektronegativität bemisst die Fähigkeit eines Elements/Atoms, in einer Bindung die Bindungselektronen an sich zu ziehen. Wie groß die Elektronegativität eines Elements ist, kannst Du mithilfe des Periodensystems herausfinden. Die Elektronegativitäten sind dort nämlich auf den Elementtafeln eingetragen. Es sind immer Zahlen zwischen 0,7 und 4.
Je nach Periodensystem können sich die Elektronegativitäten ein wenig unterscheiden, da es unterschiedliche Arten gibt, die Elektronegativität zu bestimmen. Der Grund dafür ist, dass die Elektronegativität eines Atoms nicht allein betrachtet werden kann. Die Elektronegativität bezieht sich immer auf das Verhalten des Atoms, wenn es mit einer Einfachbindung mit einem weiteren Atom eine Bindung eingeht. Die Elektronegativität hängt also von der Art und Anzahl der Bindungspartner in einem Molekül ab.
Das Element Fluor (F) hat immer die höchste Elektronegativität. Sie liegt zwischen 3,98 und 4,10. Das Alkalimetall Francium (Fr) hat die kleinste Elektronegativität. Diese liegt zwischen 0,70 und 0,90. Alle anderen Elemente des Periodensystems haben eine Elektronegativität, die irgendwo dazwischen liegt.
Unten links im Periodensystem findest Du die Elemente mit der kleinsten Elektronegativität. Dabei steigt die Elektronegativität im Periodensystem von links unten (Francium) nach rechts oben (Fluor) stetig an. Innerhalb der Gruppen im Periodensystem sinkt die Elektronegativität von oben nach unten.
Das Elektronegativitätsmodell wurde 1932 von Linus Pauling eingeführt und seitdem mehrfach verändert. Heute werden neben der Pauling-Skala auch die Allred-Rochow- und die Mulliken-Skala verwendet. Aus diesen verschiedenen Skalen resultieren unterschiedliche Elektronegativitäten für chemische Elemente.
Pauling bestimmte die Elektronegativität auf Basis zweier Elemente A und B, die miteinander verbunden sind. Dabei weisen die Elemente unterschiedliche Elektronegativitäten auf, sodass eines die Bindungselektronen mehr auf seine Seite zieht. Die Differenz ergibt sich anhand dieser Formel:
$$D_{AB}-\sqrt{D_{AA}D_{BB}}=96,48\frac{kJ}{mol}(X_A-X_B)^2$$
DAB, DAA, sowie DBB sind die Bindungsdissoziationsenergien. Die Bindungsdissoziationsenergie ist die Energie, die benötigt wird, um chemische Bindungen in die einzelnen Atome zu spalten. Diese Energie kannst Du experimentell bestimmen. Als Bezugspunkt wurde für Fluor ein Wert \(\chi_F=3,98\) festgelegt. So kann die Differenz der dimensionslosen Elektronegativitätswerte der chemischen Elemente berechnet werden.
Eine dimensionslose Größe ist ein Wert, der nur durch eine Zahl und keine Maßeinheit angegeben wird.
In dieser Tabelle siehst Du für einige Hauptgruppenelemente die resultierende Elektronegativität.
Element | EN nach Pauling |
Fluor | 3,98 |
Sauerstoff | 3,44 |
Chlor | 3,16 |
Stickstoff | 3,04 |
Brom | 2,96 |
Iod | 2,66 |
Schwefel | 2,58 |
Kohlenstoff | 2,55 |
Selen | 2,55 |
2,20 | |
Phosphor | 2,19 |
Bei dieser Skala wird angenommen, dass die Elektronegativität proportional zur elektrostatischen Anziehungskraft F ist. Diese Anziehungskraft wird von der Kernladung Z auf die Bindungselektronen ausgeübt.
$$F \approx \frac{e^2 \cdot Z_{eff}}{r^2}$$
r = Atomradius
e = Elementarladung
Zeff = effektive Kernladungszahl
Diese Methode hat den Vorteil, dass sie einfacher zu berechnen ist. Bei den Methoden von Pauling und Mulliken ist es schwierig, die benötigten Werte experimentell zu bestimmen.
Nach Mulliken bildet der Mittelwert aus der Ionisierungsenergie EI und der Elektronenaffinität Eea die Elektronegativität.
$$\chi_M = \frac{E_{ea}+E_{I}}{2}$$
Die Einheit des Ergebnisses ist Elektronenvolt (eV).
Die Elektronegativität wird genutzt, um herauszufinden, ob Verbindungen eine Ionenbindung oder eine kovalente Bindung (Atombindung) aufweisen. Um dies herauszufinden, musst Du die Differenz aus den Elektronegativitäten der beiden Verbindungspartner bilden.
Du kannst Dir merken, dass bei einer Differenz der Elektronegativitäten über 1,7 immer eine Ionenbindung vorliegt. Bei einem Wert unter 1,7 liegt immer eine Atombindung vor:
Ein einfaches Beispiel ist Natriumchlorid. Natrium hat eine Elektronegativität von 0,9 und Chlor hat eine Elektronegativität von 3,2. Daraus bildest Du jetzt die Differenz. Dabei muss immer der kleinere Wert vom größeren abgezogen werden, damit die Differenz positiv ist.
$$\chi_{Cl}-\chi_{Na}=3,2-0,9=2,3$$
Bei Natriumchlorid liegt also eine Ionenbindung vor.
So kannst Du auch die Elektronegativitätsdifferenz bei Wasser berechnen.
$$\chi_O - \chi_H = 3,4 - 2,2 = 1,2$$
1,2 ist kleiner als 1,7. Demnach handelt es sich also um eine Atombindung, auch kovalente Bindung genannt.
Bei Natriumsulfid (Na2S) ergibt sich eine Elektronegativitätsdifferenz von 1,7 (\(\chi_S - \chi_{Na} = 2,6 - 0,9 = 1,7\)). In diesem Beispiel kann man nicht allein durch die Elektronegativität bestimmen, um welchen Bindungstyp es sich handelt. Andere Untersuchungen zeigen jedoch, dass bei Natriumsulfid eine Ionenbindung vorliegt. Dieses Beispiel zeigt, dass 1,7 keine harte Grenze darstellt. Der Übergang ist eher fließend.
In der Chemie unterscheidet man zwischen polaren und unpolaren Atombindungen. Diese beiden Bindungsarten unterscheiden sich in der Stärke der Anziehung des gemeinsamen Elektronenpaares.
Schauen wir uns zunächst mal Sauerstoff an. Sauerstoff kommt immer als O2 vor. Wenn Du hier die Differenz bildest, ergibt sich: \(\chi_O - \chi_O = 3,4 - 3,4 = 0\). Dies bedeutet, dass die Sauerstoffatome gleich stark Elektronen zu sich ziehen. Diese Art von Bindung wird als unpolare Atombindung bezeichnet.
Bei Chlorwasserstoff sind die Bindungspartner nicht gleich. Chlor hat eine Elektronegativität von 3,2 und Wasserstoff eine Elektronegativität von 2,2. Hier berechnet sich die Differenz folgendermaßen: \(\chi_{Cl} - \chi_{H} = 3,2 - 2,2 = 1\). Chlor ist also elektronegativer als Wasserstoff und zieht die Bindungselektronen mehr zu sich. Solche unausgeglichenen Bindungen nennen sich polare Atombindungen.
Wenn die Elektronegativitätsdifferenz noch größer wird, dann schnappt sich der stärkere Bindungspartner irgendwann alle Elektronen. Dann handelt sich um eine Ionenbindung. Das ist bei Natriumchlorid der Fall. Solch eine Bindung entsteht, ab einer Elektronegativitätsdifferenz von etwa 1,7.
In einer Strukturformel wird eine polare Atombindung durch ein Delta gekennzeichnet. Das elektronegativere Atom erhält ein \(\delta -\) (kleines Delta minus) und das andere ein \(\delta +\) (kleines Delta plus).
Für den Übergang einer unpolaren zu einer polaren Atombindung gibt es ebenfalls einen Richtwert. Wenn die Differenz der Elektronegativität kleiner als 0,5 ist, spricht man von einer unpolaren Bindung. Ist sie größer als 0,5 spricht man von einer polaren Atombindung:
Die Elektronegativität gibt an, wie stark ein Element beziehungsweise ein Atom, Bindungselektronen zu sich ziehen kann.
Wie groß die Elektronegativität eines Elements ist, kann man mithilfe des Periodensystems herausfinden. Die Elektronegativitäten sind dort nämlich auf den Elementtafeln eingetragen.
Das Alkalimetall Francium (Fr) hat die kleinste Elektronegativität. Diese liegt zwischen 0,70 und 0,90.
Eine hohe Elektronegativität bedeutet, dass das Element beziehungsweise das Atom einen hohen Drang aufweist, in einer Verbindung Elektronen an sich zu ziehen.
Karteikarten in Elektronegativität15
Lerne jetztDie Elektronegativität misst ...
... die Fähigkeit eines Elements/Atoms, in einer Bindung die Bindungselektronen an sich zu ziehen.
Wie kannst du die Elektronegativität eines Elementes bestimmen?
Die Elektronegativität kann mit Hilfe des Periodensystems bestimmt werden. Sie hat immer einen Wert zwischen 0,7 und 4.
Das Element Fluor hat die 1) ... Elektronegativität mit 4,1 oder 3,98. Das Element mit der 2) ... Elektronegativität findest du in der ersten Gruppe den Alkalimetallen, nämlich Frankium mit 0,7 oder 0,9. Alle anderen Elemente im Periodensystem haben Werte dazwischen. Dabei 3) ... die Elektronegativität im Periodensystem von links unten (Frankium) nach rechts 4) ... (Fluor) stetig an.
1) größte
2) niedrigsten
3) steigt
4) oben
Bei welcher Elektronegativitätsdifferenz handelt es sich um eine Ionenbindung?
Bei einer Elektronegativität > 1,7.
Was sagt die Elektronegativität aus?
Die Elektronegativität gibt an, wie stark ein Element beziehungsweise ein Atom, Bindungselektronen zu sich ziehen kann. So kann man herausfinden, ob eine Verbindungen eine Ionenbindung oder eine kovalente Bindung (Atombindung) aufweist.
Wie wird die Elektronegativitätsdifferenz berechnet?
Aus der Differenz der Elektronegativitäten der beiden Elemente. Die Werte dafür werden aus dem Periodensystem abgelesen.
Du hast bereits ein Konto? Anmelden
Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.
Melde dich an für Notizen & Bearbeitung. 100% for free.
Speichere Erklärungen in deinem persönlichen Bereich und greife jederzeit und überall auf sie zu!
Mit E-Mail registrieren Mit Apple registrierenDurch deine Registrierung stimmst du den AGBs und der Datenschutzerklärung von StudySmarter zu.
Du hast schon einen Account? Anmelden