StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
Americas
Europe
Hast du dich schon einmal gefragt, wieso Geckos selbst eine spiegelglatte Oberfläche hochklettern können oder kopfüber daran laufen können ohne herunterzufallen? Wenn man sich ihre Füße anguckt, haben diese zum Beispiel keine Saugnäpfe. Wie also schaffen diese Tiere sich der Erdanziehung zu widersetzen? Diese Fähigkeit haben Geckos der Anatomie ihrer…
Entdecke über 50 Millionen kostenlose Lernmaterialien in unserer App.
Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmeldenHast du dich schon einmal gefragt, wieso Geckos selbst eine spiegelglatte Oberfläche hochklettern können oder kopfüber daran laufen können ohne herunterzufallen? Wenn man sich ihre Füße anguckt, haben diese zum Beispiel keine Saugnäpfe. Wie also schaffen diese Tiere sich der Erdanziehung zu widersetzen? Diese Fähigkeit haben Geckos der Anatomie ihrer Füße und unter anderem den Van-der-Waals-Kräften zu verdanken.
Zwischen Molekülen existieren verschiedene intermolekulare Kräfte. Zu diesen intermolekularen Kräften gehören neben den Wasserstoffbrückenbindungen und Dipol-Dipol-Kräften auch die Van-der-Waals-Kräfte. Diese werden in der Chemie zu den schwachen chemischen Bindungen gezählt, obwohl diese keine echten Bindungen, sondern Wechselwirkungen sind.
Bei den Van-der-Waals-Kräften handelt sich um Anziehungskräfte, die aufgrund von spontaner Polarisationen der Atome auftreten. Wichtig sind diese Kräfte vor allem zwischen ungeladenen Molekülen, die außerdem keinen permanenten Dipol besitzen.
Van-der-Waals-Kräfte kommen eigentlich zwischen fast allen Teilchen vor. Meistens sind jedoch andere Bindungen und Wechselwirkungen, zum Beispiel Ionenbindungen oder Dipol-Dipol-Wechselwirkungen, vorhanden, die deutlich stärker sind als die Van-der-Waals-Kräfte. Diese überdecken somit die Van-der-Waals-Kräfte.
Als Dipole bezeichnet man Moleküle, die aufgrund der Position der Ladung Enden mit entgegengesetzter Ladung besitzen. Der Dipol kann permanent sein wie in Molekülen, bei denen die Elektronen mithilfe der Elektronegativität, also der Anziehung der Elektronen durch die einzelnen Atome auf eine Seite verschoben werden. In jedem Atom treten Dipole aber auch spontan auf, indem die Elektronen sich zu einem bestimmten Zeitpunkt zufällig alle auf einer Seite befinden.
Van-der-Waals-Kräfte sind schwache ungerichtete Anziehungskräften zwischen Molekülen, die nicht geladen sind und keinen permanenten Dipol besitzen.
Um Atomkerne bewegen sich Elektronen permanent in Orbitalen. Gehen zwei Atome Bindungen ein, entsteht ein Bindungsorbital, innerhalb welches sich die Elektronen bewegen. Kommt es in diesem Bindungsorbital zwischenzeitlich zur Ungleichverteilung der Elektronen um die Atomkerne – sind die Elektronen also eher um einem Atomkern lokalisiert – hat das Molekül spontan ein positiv und ein negativ geladenes Ende. Das Molekül ist also ein Dipol. Es hat zwei Pole.
Abbildung 1: Entstehung eines spontanen Dipols
Wie du in der Abbildung auch siehst, kann ein Orbital mit einem Aufenthaltsraum der Elektronen bezeichnet werden. Innerhalb dieser Grenzen besteht eine 90%-ige Wahrscheinlichkeit, dass sich die Elektronen hier befinden. Die Verteilung innerhalb dieses Raums ist allerdings nicht festgelegt. Genauso kreisen Elektronen auch nicht auf Kreisbahnen in diesem Bereich. Sie sind frei beweglich, wodurch erst Dipole entstehen können.
Nun kann dieses Molekül mit dem spontanen Dipol, auch temporärer Dipol genannt, in einem benachbarten Molekül ebenfalls zu einem Dipol führen. Es induziert also einen anderen Dipol. Das kommt dadurch zustande, dass das positive Ende des Moleküls mit dem spontanen Dipolmoment die Elektronen des noch neutralen Moleküls auf eine Seite zieht. Dadurch hat auch das zweite Molekül ebenfalls eine ungleiche Elektronenverteilung im Bindungsorbital.
Abbildung 2: Induktion eines Dipols in einem Molekül mit symmetrischer Ladungsverteilung
Die Moleküle, die jetzt ein spontanes und induziertes Dipol besitzen, ziehen sich an. Denn es herrscht eine elektrostatische Anziehung – die Van-der-Waals-Kräfte – zwischen den Gegenpolen beider Moleküle. Eine alternative Situation wäre, wenn zwei Moleküle mit spontanen Dipolen direkt aufeinander treffen und sich entsprechend ihrer Pole zueinander ausrichten und es so zur Anziehung zwischen beiden kommt.
Abbildung 3: Van-der-Waals-Kräfte zwischen Molekülen
Damit ein spontanes Dipol eines Moleküls ein Dipol in einem anderen Molekül induzieren kann und es so zu Van-der-Waals-Kräften kommt, müssen sich die Moleküle sehr nah sein. Die Wechselwirkungsenergie, also die Stärke dieser Kräfte, ist proportional zur negativen sechsten Potenz des Abstandes. Wird der Abstand also um 2 größer, nehmen die Van-der-Waals-Kräfte um das 64-fache ab.
Eine Annäherung ist umso schwieriger, je höher die Temperatur ist. Und je höher die Temperatur steigt, umso mehr überwiegt die thermische Bewegung gegenüber der Van-der-Waals-Kräften, sodass diese überwunden werden können.
Der Einfluss der Van-der-Waals-Kräfte lässt sich am Beispiel der Alkane verdeutlichen: Mit zunehmender Kettenlänge nimmt der Siedepunkt zu. So hat Ethan zum Beispiel einen Siedepunkt von -88,6 °C, während n-Heptan einen Siedepunkt von 98,4 °C hat. Dieses Verhalten lässt sich durch die Van-der-Waals-Kräfte erklären. Die Oberfläche langer Moleküle ist größer als die der kurzen Moleküle.
Dadurch wirken mehr Van-der-Waals-Kräfte zwischen den einzelnen Ketten (Van-der-Waals-Kräfte addieren sich auf) und es braucht eine höhere Temperatur, um diese zu überwinden.
Abbildung 4: Van-der-Waals-Kräfte zwischen Ethan-Molekülen (links) und Heptan-Molekülen (rechts)
Heptan könnte also ohne Van-der-Waals-Kräfte kaum als Flüssigkeit vorliegen. Auch anderen unpolaren Substanzen könnten nicht im flüssigem oder festem Aggregatszustand auftreten.
Je verzweigter Alkane werden, desto niedriger wird der Siedepunkt. Das liegt daran, dass mit steigender Verzweigung in den Isomeren die Oberfläche des Moleküls verringert wird. Dadurch können zwischen den einzelnen Molekülen weniger Kräfte wirken. So hat n-Heptan neun Konstitutionsisomere, die unterschiedliche Siedepunkte besitzen. Beispielsweise hat 2-Methylhexan eine Siedetemperatur von 90 °C, 3,3-Diemthylpentan eine Siedetemperatur von 86 °C und 2,2-Dimehtylpentan 79 °C.
Abbildung 5: Konstitutionsisomere von Heptan
Van-der-Waals-Bindungen können auch Festkörper zusammenhalten. Ein Beispiel dafür sind die Edelgaskristalle, die nur bei sehr tiefen Temperaturen vorkommen und allein auf den Van-der-Waals-Kräften beruhen. Die neutralen Edelgasatome können sich bei tiefen Temperaturen nahe genug kommen, sodass die temporären Dipole interagieren können.
Jetzt kann man auch erklären, wieso Geckos nicht von der Decke fallen. Geckos haben unter ihren Füßen sogenannte Spatulae. Diese sind Hafthärchen, die nur 15 Nanometer dick sind. Milliarden solcher Hafthärchen vergrößern die Oberfläche der Fußunterseite, wodurch eine größere Kontaktfläche entsteht. Jedes dieser Hafthärchen interagiert mittels Van-der-Waals-Kräfte mit Oberflächen. Diese einzelnen kleinen Kräfte addieren sich zu einer Kraft von etwa 40 Newton auf und halten den Gecko an der Decke.
Unter Van-der-Waals-Kräften versteht man die Anziehungskräfte zwischen zwei Molekülen, die spontan Dipole entwickeln. Dabei ist ein Dipol tatsächlich spontan beziehungsweise temporär. Der andere wird induziert. Durch die ungleiche Ladungsverteilung ziehen sich die entgegengesetzt geladenen Bereiche der Moleküle an.
Diese Form der Kräftewirkung tritt prinzipiell zwischen fast allen Teilchen auf. Allerdings sind meist andere Anziehungs- oder Abstoßungskräfte stärker, sodass die Van-der-Waals-Kräfte überlagert werden. Bedingung ist, dass die betroffenen Moleküle nicht geladen sind und keinen permanenten Dipol besitzen.
Aufgrund einer spontanen Ladungsverteilung entwickelt sich ein Molekül zu einem temporären Dipol. Dieser beeinflusst weitere Moleküle und zieht Elektronen mit der positiv geladenen Seite an. Es entsteht ein weiterer Dipol, der als induziert bezeichnet wird. Die unterschiedlich geladenen Bereiche ziehen sich an, was dann als Van-der-Waals-Kraft bezeichnet wird.
Ein spontaner Dipol tritt auf, wenn aufgrund der Ladungsverteilung im Molekül eine Seite negativer geladen ist, während die andere leicht positiv geladen ist. Dieser Fall trifft immer zufällig ein, da sich die Elektronen wahllos um den Atomkern bewegen und sich zu diesem Zeitpunkt fast alle auf einer Seite befinden.
Karteikarten in Van der Waals Kräfte11
Lerne jetztWas sind Van-der-Waals-Kräfte?
Van-der-Waals-Kräfte sind schwache Anziehungskräfte zwischen Molekülen, die aufgrund von spontaner Polarisation der Atome und Moleküle auftreten.
Wie entstehen Van-der-Waals-Kräfte?
Kommt es zu einer Ungleichverteilung der Elektronen um Atomkerne, entstehen ein temporäre Dipole. Diese können in Nachbarmolekülen einen Dipol induzieren oder mit anderen temporären Dipolen wechselwirken. Diese Wechselwirkung sind dann die Van-der-Waals-Kräfte.
Welche Voraussetzungen müssen für Van-der-Waals-Kräfte erfüllt werden?
Die Moleküle müssen polarisierbar und ungeladen sein. Außerdem müssen sich Moleküle sehr nah sein, denn Van-der-Waals-Kräfte sind abhängig vom Abstand.
Welches der folgenden Konstitutionsisomere des Heptans hat die höchste Siedetemperatur?
2-Methylhexan
Wieso fallen Geckos nicht von der Decke?
Aufgrund der hohen Anzahl an Hafthärchen, haben die Füße von Geckos eine sehr große Oberfläche. Dadurch wirken stärkere Van-der-Waals-Kräfte, die einen Gecko an der Decke halten.
Welche schwachen chemischen Bindungen gibt es?
Du hast bereits ein Konto? Anmelden
Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.
Melde dich an für Notizen & Bearbeitung. 100% for free.
Speichere Erklärungen in deinem persönlichen Bereich und greife jederzeit und überall auf sie zu!
Mit E-Mail registrieren Mit Apple registrierenDurch deine Registrierung stimmst du den AGBs und der Datenschutzerklärung von StudySmarter zu.
Du hast schon einen Account? Anmelden