Login Anmelden

Select your language

Suggested languages for you:

Select your language

Suggested languages for you:
StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
|
|

Nernst Gleichung

Nernst Gleichung

Die Spannung zwischen Menschen kann man manchmal allein durch deren Anwesenheit spüren, bei galvanischen Elementen ist das nur leider nicht so. Da muss noch die gute, alte Rechnung helfen. Genau diese Rechnung, die die Spannung zwischen zwei Halbzellen eines galvanischen Elements bestimmen kann, ist die Nernst Gleichung. Alles zur Nernst Gleichung findest Du in dieser Erklärung!

Die Nernst Gleichung wurde vom deutschen Physiker und Chemiker Walther Nernst entwickelt. Sie stammt aus der Elektrochemie. Dort wird sie verwendet, um die Spannung zu bestimmen, die zwischen zwei Halbzellen eines galvanischen Elements herrscht. Zudem beschreibt die Nernst Gleichung auch die Konzentration der chemischen Reaktionen, die die Spannung beeinflusst.

Nernst Gleichung Galvanische Zelle

Ein galvanisches Element, auch galvanische Zelle oder galvanisches Element genannt, ist eine Vorrichtung zur Umwandlung von chemischer in elektrische Energie. Dabei werden zwei Elektroden mit Elektrolyten als Gleichspannungsquellen eingesetzt.

Die Elektroden sind meist Metallplatten oder Metallstäbe, die sich in der Lösung, also dem Elektrolyten befinden. Die Elektroden sind dabei zum Leiten von Elektronen da. Sie werden auf einer Seite abgegeben und sind dann im Überschuss da. Anschließend werden sie von der einen Elektrode zur anderen geleitet, um diesen Überschuss auszugleichen. Diese Elektroden-Strömung ist dann der Dir bekannte Strom.

Die Elektrolyte sind dabei die Lösungen, die diese Elektronen abgeben oder aufnehmen, je nachdem, ob dort eine Reduktion oder Oxidation stattfindet.

Edle und unedle Metalle sind Begriffe für die Veranlagung eines Metalls Elektronen abzugeben oder aufzunehmen. Edle Metalle besitzen dabei immer einen hohen Wert des Standardpotentials und nehmen damit Elektronen auf. Bei unedlen Metallen ist es genau andersherum.

Um mehr dazu erfahren, kannst Du Dir die Erklärung Elektrochemische Spannungsreihe anschauen!

Gleichzeitig werden durch die Abgabe von Elektronen auch Protonen frei, die dann über die Ionenbrücke auch rüber in die andere Halbzelle wandern. Dort reagieren die freien Elektronen und Protonen dann mit dem Elektrolyten der Lösung bei einer Reduktion, also einer Aufnahme von Elektronen, und schließen sich dann zu einem elementaren Stoff, wie Kupfer zusammen. Dieser elementare Stoff hängt sich dann an die edle Elektrode, die aus dem gleichen Metall ist.

Dadurch gewinnt die edlere Elektrode tatsächlich mit der Zeit an Volumen und die unedlere Elektrode verliert Volumen.

Nernst Gleichung – Voraussetzungen

Die Nernst Gleichung wird zur Berechnung der Spannung in galvanischen Zellen verwendet. Eine Grundlage hierfür liegt in der Redoxreaktion zwischen den beiden Halbzellen im galvanischen Element.

Halbzellen sind die einzelnen Gefäße mit ihren dazugehörigen Elektrolyten und Elektroden. Es heißt Halbzelle, weil es immer noch eine weitere Zelle benötigt, damit eine Reaktion abläuft und so Strom durch Elektronenwanderung entstehen kann. So entsteht aus zwei Halbzellen eine ganze Zelle genauer gesagt ein galvanisches Element.

Die Seite, auf der eine Oxidation stattfindet, gibt Elektronen ab. Diese werden dann durch einen elektrischen Leiter zur anderen Halbzelle geleitet. Dort findet schließlich die Reduktion statt. Durch die Spannung zwischen der Oxidations- und Reduktionshalbzelle entsteht schließlich Strom.

So entsteht etwa kein Strom, wenn die beiden Halbzellen aus derselben Elektrode und dem gleichen Elektrolyten bestehen, wie es beispielsweise bei Kupfer und Kupfersulfatlösung der Fall ist. Erst wenn die Kupfersulfatlösungen eine unterschiedlich starke Konzentration aufweisen, kann Strom fließen und damit eine Spannung gemessen werden.

Berechnung der Zellspannung

Die Energie, die durch den Strom entsteht, wird durch die folgende Formel beschrieben.

$$ \Delta E = z \cdot U \cdot n \cdot e \cdot A$$

Dabei gelten die folgenden Erklärungen:

  • ΔE = gewonnene Energie
  • z = Anzahl an Ladungen, die bei Redoxreaktion frei wird
  • U = Spannung zwischen den Halbzellen
  • n = Stoffmenge
  • e = Elementarladung
  • A = Avogadrokonstante

Zudem stellt die Formel \(n \cdot e \cdot A\) die Ladung dar, die in einem Mol gespeichert ist. Dies wird auch als Faradaykonstante F bezeichnet. Wenn jedes Atom eines Mols ein Elektron abgibt, ergibt sich: $$\Delta E = z \cdot U \cdot F$$

Allgemeine Form der Nernst Gleichung

Die Nernst Gleichung lautet: $$E=E^{0}+ \frac{R \cdot T}{n \cdot F} \cdot \ln \frac{c(Ox)}{c(Red)}$$

Dabei wird hier wieder das Elektrodenpotential E berechnet. Dazu addierst Du das Standardpotential E0, welches Du in einer offiziellen Tabelle findest, ganz einfach zu folgenden Komponenten. R steht für die Gaskonstante, welche immer einen Wert von 8,31 J mol K aufweist, T ist die Temperatur, n die Anzahl an wandernden Elektronen und F ist die Faraday-Konstante, welche einen grundsätzlichen Wert von 96 485,309 hat. und sind jeweils die Konzentrationen der Oxidations- und Reduktionsmittel.

Nernst Gleichung – Verwendung

Die Nernst Gleichung kann für viele verschiedene Prozesse angewandt werden. Dazu gehören unter anderem die Reduktion, die Knallgasreaktion, die Konzentrationselemente und die Berechnung des pH-Werts, sowie die Lambdasonden.

Die Reduktion der Nernst Gleichung

Ebenfalls kann die Nernst Gleichung auf die Reduktion angewandt werden. Die Reduktion wird dabei direkt in die Nernst Gleichung umgewandelt:

Nernst Gleichung Reduktion StudySmarter

Die Knallgasreaktion

Die Knallgasreaktion besteht aus zwei getrennten Oxidationen oder Reduktionen. Dies geschieht in Wasserstoff-Sauerstoff-Brennstoffzellen. Die Spannung, die hierbei entsteht, kann durch die Nernst Gleichung berechnet werden.

Mehr zur Knallgasprobe kannst Du in dessen Erklärung finden.

Nernst Gleichung Knallgas Reaktion StudySmarter

Bei der Knallgasreaktion reagieren, wie Du siehst, zwei mal zwei Wasserstoffatome mit zwei Sauerstoffatomen und dabei ergeben sich zwei Wassermoleküle. Da bei der Reaktion viel Energie frei wird, kommt es zu diesem Knall, welcher der Reaktion ihren Namen verleiht.

Berechnung der Konzentrationselemente

Das Konzentrationselement bietet eine vielversprechende Möglichkeit, um die Nernst Gleichung darzustellen. Es besteht aus zwei Halbzellen, dem Elektrolyten und einer unterschiedlichen Anzahl an Ionen.

Beispielsweise kann ein Kupfer-Konzentrationselement verwendet werden, das aus zwei Kupferelektroden besteht und sich in unterschiedlich verdünnter Kupfersulfatlösung befindet. Wenn der Strom zwischen den beiden Elektroden fließt, gleicht sich schließlich die Konzentration der beiden Lösungen aneinander an.

In der Halbzelle mit der größeren Kupferionenkonzentration läuft eine Reduktion ab:

Nernst Gleichung Reduktion Kupfer StudySmarter

In der Halbzelle mit kleinerer Kupferionenkonzentration findet stattdessen eine Oxidation statt:

Nernst Gleichung Oxidation Kupfer StudySmarter

Die Nernst Gleichung kann nun auf die Teilreaktionen oder die Gesamtreaktion angewendet werden. Damit erhält man die Spannung des Kupfer-Konzentrationselements.

Berechnung des pH-Werts

Auch der pH-Wert kann durch die Nernst Gleichung ermittelt werden, wobei bestimmte Glaselektroden zur pH-Messung als H+-Konzentrationselement eingesetzt werden. Dabei misst ein zugehöriges Messgerät die Spannung, die eine Lösung mit einem unbekannten pH-Wert besitzt und rechnet diese in den dazugehörigen pH-Wert um.

Wenn Du also den pH-Wert einer Lösung berechnen möchtest, musst Du eine Halbzelle mit einer Lösung mit bekanntem pH-Wert, mit einer Lösung mit unbekanntem pH-Wert verbinden. Um eine Spannungsänderung zu verhindern, wird der elektrische Widerstand erhöht, sodass kein Strom fließt und daher keine Reaktion stattfindet.

Da die Konzentrationen gleich bleiben, gibt es auch keine Änderungen bei der Spannung. Dann benötigst Du ein Spannungsmessgerät, um mithilfe der Nernst Gleichung die Spannung und damit den unbekannten pH-Wert zu ermitteln.

Lambdasonden

Lambdasonden werden vor allem im Auspuff bei Verbrennungsmotoren eingesetzt, um den Sauerstoffgehalt zu ermitteln. Dabei kann ebenfalls die Nernst Gleichung eingesetzt werden. Die Sensorelemente der Lambdasonde leiten Sauerstoffionen. Da bei Luft und Abgasen ein Konzentrationsabfall stattfindet, entsteht eine Spannung, die durch die Nernst Gleichung berechnet wird. Dadurch ist es auch möglich, den gewünschten Anteil an Sauerstoff einzustellen.

Nernst Gleichung: Beispiel zur Berechnung

Für die Grundsätze, die Du für das Verständnis des galvanischen Elements zur Berechnung benötigst, schaust Du Dir am besten noch einmal die Erklärung Galvanische Zelle an.

Aufgabe: Berechne die Spannung in einem Daniell-Element, in dem die Konzentrationen c(Cu2+) = 0,1 mol/l und c(Zn2+) = 0,01 mol/l sind. Das Daniell-Element wird unter Standardbedingungen eingesetzt.

Dazu hältst Du Dir als Erstes noch mal die Nernst Gleichung vor Augen:

$$E=E^{0}+ \frac{R \cdot T}{n \cdot F} \cdot \ln \frac{c(Ox)}{c(Red)}$$

Als Nächstes schaust Du am besten, welche der Variablen Du schon hast und dementsprechend einfach so einsetzen kannst:

R = 8,31 J mol K

F = 96 485,309

T = 20 °C (immer die Temperatur bei Standardbedingungen)

Da für jede Halbzelle nun zunächst die Spannung ausgerechnet werden muss, von der dann am Ende die Anodenspannung von der Kathodenspannung abgezogen wird:

$$E_{Gesamt} = E_{Anode} - E_{Kathode}$$

Beginn mit der Anode, also Zink. Dabei siehst Du, dass Zink die Anode ist, da Zink das unedlere Element ist. Die Anzahl an gewanderten Elektronen und das Standardpotential kannst Du in der Tabelle der Standardpotentiale nachlesen.n = 2E0Zn= -0,76 VAlso ergibt sich nach dem Einsetzen folgende Gleichung:

$$E_{Anode} = - 0,76\, V + \frac{8,31\, J\, mol\, K \cdot 20\, °C}{2 \cdot 96485,309\, \frac{c}{mol}} \cdot \ln \frac{0,01\, \frac{mol}{l}}{1} = - 0,815\, V$$

das Gleiche mit der Kathode, also Kupfer:

n = 2

E0Zn= +0,34 V

$$E_{Kathode} = + 0,34\, V + \frac{8,31\, J\, mol\, K \cdot 20\, °C}{2 \cdot 96485,309\, \frac{c}{mol}} \cdot \ln \frac{0,01\, \frac{mol}{l}}{1} = +0,314\, V$$

Nun wird nur noch das Ergebnis der Kathode von der Anode von der Kathode subtrahiert:

$$E_{Kathode} - E_{Anode} = +0,314\, V - (-0,815\, V)=1,129\, V$$

Und so hast Du mithilfe der Nernst Gleichung die Spannung des Daniell-Elements ausgerechnet!

Nernst Gleichung – Das Wichtigste

  • Die Nernst Gleichung wird verwendet, um die Konzentration und Spannung zwischen zwei Halbzellen zu berechnen
  • Es gibt die allgemeine sowie die angewandte Nernst Gleichung (siehe Formeln im Text)
  • Die Nernst Gleichung kann zur Berechnung bei Reduktionen, Berechnung des pH-Werts, Lambdasonden, und vielem mehr eingesetzt werden.

Nachweise

  1. chemgapedia.de: Nernst'sche Gleichung (28.08.2022)
  2. chemie.de: Knallgas (28.08.2022)

Häufig gestellte Fragen zum Thema Nernst Gleichung

Die Nernst Gleichung lautet:


$$E=E^{0}+ \frac{R \cdot T}{n \cdot F} \cdot \ln \frac{c(Ox)}{c(Red)}$$ 

Die Nernst Gleichung wird verwendet, um die Spannung zu bestimmen, die zwischen zwei Halbzellen eines galvanischen Elements herrscht. Zudem beschreibt die Nernst Gleichung auch die Konzentration der chemischen Reaktionen, die die Spannung beeinflusst.

Die Nernst Gleichung kann man verwenden, um Spannung zu bestimmen, die zwischen zwei Halbzellen eines galvanischen Elements herrscht, die Konzentration der chemischen Reaktionen, die die Spannung beeinflusst zu beschreiben und noch vieles mehr.

Mithilfe der Konzentrationskette kann man die Nernst Gleichung herleiten. Diese dient heute primär zu Demonstrationszwecken, da man mit ihr die Konzentrationsabhängigkeit des Elektrodenpotentials genauer gesagt des chemischen Potentials qualitativ zeigen und quantitativ überprüfen kann.

Finales Nernst Gleichung Quiz

Frage

Was kann man mithilfe der Nernst Gleichung bestimmen?

Antwort anzeigen

Antwort

Mithilfe der Nernst Gleichung kann man die Spannung bestimmen, die zwischen zwei Halbzellen eines galvanischen Elements herrscht und die Konzentration der chemischen Reaktionen, die die Spannung beeinflusst.

Frage anzeigen

Frage

Was kann ein galvanisches Element umwandeln?

Antwort anzeigen

Antwort

Ein galvanisches Element kann chemische Energie in elektrische Energie umwandeln.

Frage anzeigen

Frage

Auf welcher Grundlage basiert die Nernst Gleichung?

Antwort anzeigen

Antwort

Auf der Redoxgleichung des galvanischen Elements.

Frage anzeigen

Frage

Zu welchen Berechnungen kann die Nernst Gleichung noch verwendet werden, außer der Berechnung von Spannung und Konzentration eines galvanischen Elements?

Antwort anzeigen

Antwort

Die Nernst Gleichung kann zur Berechnung bei Reduktionen, Berechnung des pH-Werts, Lambdasonden, und vielem mehr eingesetzt werden.

Frage anzeigen

Frage

In welchem Bereich in der Chemie wird die Nernst Gleichung verwendet?

Antwort anzeigen

Antwort

Die Nernst Gleichung wird in der Elektrochemie verwendet.

Frage anzeigen

Frage

Was wird benötigt damit Strom ensteht?

Antwort anzeigen

Antwort

Damit Strom entsteht bedarf es einer Spannung.

Frage anzeigen

Frage

Berechne EZelle für die folgende galvanische Zelle.


Zn|Zn2+ (1.0M) || Ag+|Ag (1.5M)


EAg+/ Ag = 1.08V and EZn2+/ Zn = -0.76V

Antwort anzeigen

Antwort

1,85 V

Frage anzeigen

Frage

Was ist die Nernst-Gleichung?

Antwort anzeigen

Antwort

Eine Gleichung zur Berechnung der Spannung einer Reaktion.

Frage anzeigen

Frage

Was musst Du machen, um den pH-Wert einer Lösung mit der Nernst Gleichung zu berechnen?

Antwort anzeigen

Antwort

Wenn Du den pH-Wert einer Lösung berechnen möchtest, musst Du eine Halbzelle mit einer Lösung mit bekanntem pH-Wert, mit einer Lösung mit unbekanntem pH-Wert verbinden.

Frage anzeigen

Frage

Warum gewinnt die edlere Elektrode mit der Zeit an Volumen und warum wird die unedlere immer kleiner?

Antwort anzeigen

Antwort

Da die unedle Elektrode Elektronen und Metallionen an die Elektrolytlösung abgibt und die edle Elektrode Elektronen und Metallionen aus der Elektrolytlösung aufnimmt.

Frage anzeigen

Frage

Warum knallt es bei der Knallgasreaktion?

Antwort anzeigen

Antwort

Bei der Knallgasreaktion wird viel Energie frei, die sich in einem lauten Knall äußert.

Frage anzeigen

60%

der Nutzer schaffen das Nernst Gleichung Quiz nicht! Kannst du es schaffen?

Quiz starten

Finde passende Lernmaterialien für deine Fächer

Alles was du für deinen Lernerfolg brauchst - in einer App!

Lernplan

Sei rechtzeitig vorbereitet für deine Prüfungen.

Quizzes

Teste dein Wissen mit spielerischen Quizzes.

Karteikarten

Erstelle und finde Karteikarten in Rekordzeit.

Notizen

Erstelle die schönsten Notizen schneller als je zuvor.

Lern-Sets

Hab all deine Lermaterialien an einem Ort.

Dokumente

Lade unzählige Dokumente hoch und habe sie immer dabei.

Lern Statistiken

Kenne deine Schwächen und Stärken.

Wöchentliche

Ziele Setze dir individuelle Ziele und sammle Punkte.

Smart Reminders

Nie wieder prokrastinieren mit unseren Lernerinnerungen.

Trophäen

Sammle Punkte und erreiche neue Levels beim Lernen.

Magic Marker

Lass dir Karteikarten automatisch erstellen.

Smartes Formatieren

Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.

Melde dich an für Notizen & Bearbeitung. 100% for free.

Get FREE ACCESS to all of our study material, tailor-made!

Over 10 million students from across the world are already learning smarter.

Get Started for Free
Illustration