StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
Americas
Europe
Hast Du im Zusammenhang mit chemischen Gleichgewichten schon von dem Prinzip des kleinsten Zwanges gehört und Dich gefragt, was es mit diesem Zwang auf sich hat? Was diese Theorie – auch als das Prinzip von Le Chatelier bekannt – mit der Beeinflussung von genau diesen Gleichgewichtsreaktionen zu tun hat und welche Faktoren dabei eine Rolle spielen, erfährst Du in diesem…
Entdecke über 200 Millionen kostenlose Materialien in unserer App
Speicher die Erklärung jetzt ab und lies sie, wenn Du Zeit hast.
SpeichernLerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmeldenHast Du im Zusammenhang mit chemischen Gleichgewichten schon von dem Prinzip des kleinsten Zwanges gehört und Dich gefragt, was es mit diesem Zwang auf sich hat? Was diese Theorie – auch als das Prinzip von Le Chatelier bekannt – mit der Beeinflussung von genau diesen Gleichgewichtsreaktionen zu tun hat und welche Faktoren dabei eine Rolle spielen, erfährst Du in diesem StudySmarter Original.
Wenn eine Reaktion in beide Richtungen ablaufen kann, ist sie reversibel. Einerseits entstehen aus den Ausgangsstoffen (Edukte) die Endstoffe (Produkte). Genau so können die Produkte auch zu den Edukten reagieren. Laufen sowohl die Hin- als auch die Rückreaktion mit der gleichen Geschwindigkeit ab, dann befindet sich das System im Gleichgewicht.
Diese Gleichgewichte können mithilfe des Massenwirkungsgesetzes mathematisch beschrieben werden. Hieraus erhältst Du die sogenannte Gleichgewichtskonstante K.
Kurz gesagt lässt sich das Prinzip des kleinsten Zwanges (oder auch das Prinzip von Le Chatelier) so erklären: Wirkt auf ein chemisches System im Gleichgewicht ein äußerer Zwang, so stellt sich ein neues Gleichgewicht ein, sodass die Wirkung dieses Zwanges immer kleiner wird. Mit dem Zwang sind hier beispielsweise Druck- oder Temperaturänderungen gemeint.
Das Prinzip des kleinsten Zwanges wurde von den Wissenschaftlern Henry Le Chatelier und Ferdinand Braun zwischen 1884 und 1888 entwickelt und formuliert.
Wichtige Größen, die die Lage eines chemischen Gleichgewichts beeinflussen, sind die Konzentration der beteiligten Reaktionspartner, die Temperatur und der Druck, die auf das System wirken. Im ersten Fall ist der Zwang also der Stoffaustausch des Reaktionssystems mit seiner Umgebung. In den anderen Fällen werden die sogenannten Zustandsgrößen eines Systems, also die Temperatur und der Druck, verändert.
Wird die Konzentration eines der Edukte erhöht, so können mehr Ausgangsstoffe miteinander reagieren. Die Hinreaktion wird also gefördert. Chemiker*innen sagen, die Lage des Gleichgewichts verschiebt sich auf die Produktseite, da jetzt mehr Produkt gebildet werden kann. Der gleiche Effekt kann erzielt werden, wenn ständig das Produkt entnommen wird. Auf diesem Weg wird die Konzentration des Endstoffs künstlich niedrig gehalten, sodass konstant Produkt nachgeliefert wird.
Das Ganze kannst Du Dir hier an der Reaktion von Schwefeldioxid (\(SO_2\)) mit molekularem Sauerstoff (\(O_2\)) zu Schwefeltrioxid (\(SO_3\)) anschauen.
Wendest Du hierauf das Massenwirkungsgesetz (MWG) an, erhältst Du:
Das kannst Du auch noch umformen:
Wie Du hier erkennst, muss das Konzentrationsverhältnis \(\frac{c_{SO_3}}{c_{SO_2}}\) zunehmen, wenn eine erhöhte Konzentration an Sauerstoff vorliegt. Die Bildung des Produkts Schwefeltrioxid wird also durch Zunahme der Konzentration eines der Edukte gefördert.
Wird die Temperatur des Systems erhöht, versucht das System auch diesem Zwang zu entweichen. Du kannst Dir die zusätzliche Wärme als eine Art weiterer Reaktionspartner vorstellen. Dieser muss verbraucht werden, um das vorherige Gleichgewicht wieder herzustellen.
Die Lage des chemischen Gleichgewichts verschiebt sich dabei in die Richtung, in der Energie verbraucht wird. Allgemein kann gesagt werden, dass eine Temperaturerhöhung bei exothermen Reaktionen die Rückreaktion fördert, während sie bei endothermen Reaktionen die Hinreaktion fördert.
Bei exothermen Reaktionen mit ΔH° < 0 wird bei der Hinreaktion Energie frei. Endotherme Reaktionen mit ΔH° > 0 verbrauchen hingegen bei der Hinreaktion Energie.
Schau Dir die folgenden Reaktionen an, um den Einfluss von Temperaturänderungen besser zu verstehen:
In der oberen Reaktion wird Energie verbraucht, wenn Ammoniak \((NH_3)\) wieder in seine Bestandteile Wasserstoff (\(H_2\)) und Stickstoff (\(N_2\)) zerfällt. Es muss also die endotherme Reaktion vermehrt ablaufen, um das Gleichgewicht wieder einzustellen.
In der unteren Reaktion ist die endotherme Reaktion die Hinreaktion. Sie muss also bei einer Temperaturerhöhung vermehrt ablaufen, um das chemische Gleichgewicht wieder herzustellen. So bildet sich vermehrt Kohlenstoffmonoxid (\(CO\)).
Da die beiden oben genannten Reaktionen Gase verbrauchen und auch neue Gase bilden, können diese chemischen Gleichgewichte auch durch Ausüben von Druck beeinflusst werden. So wird der Raum, den die Gasteilchen untereinander teilen, durch eine Druckerhöhung verengt. Das chemische Gleichgewicht verschiebt sich dann auf die Seite, auf der weniger Gasteilchen entstehen. So wird die Gesamtanzahl an Teilchen verringert und diese benötigen weniger Platz.
Bei Gasreaktionen ist das Prinzip von Le Chatelier auch nur dann anwendbar, wenn eine Stoffmengenänderung vorliegt. Ist die Anzahl an Teilchen auf beiden Seiten gleich, bewirkt eine Änderung des Drucks auch keine Verschiebung der Gleichgewichtslage.
Für die Ammoniak-Reaktion bedeutet das also, dass sich das Gleichgewicht bei einer Druckerhöhung in Richtung des Produkts verschieben würde, da dort weniger Teilchen entstehen. Umgekehrt würde sich das Gleichgewicht der zweiten Reaktion zugunsten der Edukte verschieben, da aus zwei Mol \(CO\) nur ein Mol \(CO_2\) wird.
Ein Beispiel aus der Industrie, das sich das Prinzip des kleinsten Zwanges zunutze macht, ist das Haber Bosch Verfahren. Hier werden alle Faktoren perfekt aufeinander abgestimmt, um eine maximale Ausbeute des gewünschten Ammoniaks zu bekommen. Das Problem besteht nur darin, dass die verschiedenen Einflüsse teilweise entgegengesetzt auf die Reaktion wirken.
Zuallererst muss erwähnt sein, dass die Reaktion von Wasserstoff und Stickstoff zu Ammoniak eine relativ hohe Aktivierungsenergie benötigt. Allerdings kommt es durch Temperaturerhöhung auch zu einer verstärkten Rückreaktion, in der das Produkt wieder zerfällt. Andererseits kann die Ausbeute an Reaktionsprodukt in dem Fall von Ammoniak durch eine Druckerhöhung gesteigert werden.
Wenn zwei Stoffe nicht freiwillig miteinander reagieren, benötigt es einer gewissen Menge Energie, um die Reaktion in Gang zu setzen. Diese Energie wird daher auch Aktivierungsenergie genannt. Diese kann durch einen sogenannten Katalysator verringert werden.
Das Ziel des Verfahrens lag darin, die bestmögliche Kombination aus Druck und Temperatur zu finden, bei der die größtmögliche Ausbeute an Ammoniak gewonnen wird. Es stellte sich heraus, dass das bei einem Druck von etwa 300 bar und einer Temperatur von etwa 550 °C erreicht war. Zusätzlich kann dann die Hinreaktion durch ständige Entnahme des Produkts gefördert werden.
Durch erhöhten Druck wird das Gesamtvolumen verringert. Um diesem äußeren Einfluss entgegenzuwirken, passt sich das chemische Gleichgewicht so an, dass die Anzahl an Gasteilchen verringert wird. Da bei der Ammoniaksynthese aus 4 mol Gasteilchen zwei mol Ammoniak gebildet werden, begünstigt eine Erhöhung des Drucks auch die Hinreaktion. Deshalb wird dann mehr Ammoniak gebildet.
Endotherme Reaktionen laufen bei erhöhter Temperatur vermehrt ab, da sie die zugeführte Wärme verbrauchen.
Bei erhöhtem Druck läuft die Reaktion vermehrt ab, bei der weniger Gasteilchen gebildet werden. Der Grund hierfür liegt darin, dass bei Druckerhöhung das Volumen verringert wird, auf dem sich die Gasteilchen aufhalten. Weil weniger Teilchen auch einen kleineren Raum einnehmen, verringert das den gesamten Druck, der auf das System wirkt.
Gemäß dem Prinzip des kleinsten Zwanges reagieren chemische Gleichgewichte so auf einen äußeren Einfluss, dass die Wirkung dieses Zwanges verringert wird.
der Nutzer schaffen das Prinzip des kleinsten Zwanges Quiz nicht! Kannst du es schaffen?
Quiz startenWie möchtest du den Inhalt lernen?
Wie möchtest du den Inhalt lernen?
Kostenloser chemie Spickzettel
Alles was du zu . wissen musst. Perfekt zusammengefasst, sodass du es dir leicht merken kannst!
Sei rechtzeitig vorbereitet für deine Prüfungen.
Teste dein Wissen mit spielerischen Quizzes.
Erstelle und finde Karteikarten in Rekordzeit.
Erstelle die schönsten Notizen schneller als je zuvor.
Hab all deine Lermaterialien an einem Ort.
Lade unzählige Dokumente hoch und habe sie immer dabei.
Kenne deine Schwächen und Stärken.
Ziele Setze dir individuelle Ziele und sammle Punkte.
Nie wieder prokrastinieren mit unseren Lernerinnerungen.
Sammle Punkte und erreiche neue Levels beim Lernen.
Lass dir Karteikarten automatisch erstellen.
Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.
Melde dich an für Notizen & Bearbeitung. 100% for free.
Speichere Erklärungen in deinem persönlichen Bereich und greife jederzeit und überall auf sie zu!
Mit E-Mail registrieren Mit Apple registrierenDurch deine Registrierung stimmst du den AGBs und der Datenschutzerklärung von StudySmarter zu.
Du hast schon einen Account? Anmelden