Open in App
Login Anmelden

Select your language

Suggested languages for you:
StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
|
|
Citratzyklus

Der Citratzyklus ist ein wichtiger Schritt der aeroben Zellatmung. Er nutzt das Endprodukt des Abbaus von Kohlenhydraten, Fetten und Aminosäuren, Acetyl-CoA, um die Energiegewinnung in der Atmungskette vorzubereiten. Er dient außerdem der Bereitstellung von Molekülen zur Synthese von Aminosäuren und Fetten.

Inhalt von Fachexperten überprüft
Kostenlose StudySmarter App mit über 20 Millionen Studierenden
Mockup Schule

Entdecke über 50 Millionen kostenlose Lernmaterialien in unserer App.

Citratzyklus

Illustration

Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken

Jetzt kostenlos anmelden

Nie wieder prokastinieren mit unseren Lernerinnerungen.

Jetzt kostenlos anmelden
Illustration

Der Citratzyklus ist ein wichtiger Schritt der aeroben Zellatmung. Er nutzt das Endprodukt des Abbaus von Kohlenhydraten, Fetten und Aminosäuren, Acetyl-CoA, um die Energiegewinnung in der Atmungskette vorzubereiten. Er dient außerdem der Bereitstellung von Molekülen zur Synthese von Aminosäuren und Fetten.

Citratzyklus Definition

Der Citratzyklus wird auch Zitronensäurezyklus oder Krebs-Zyklus genannt. In acht Reaktionen wird Acetyl-CoA zu CO₂ oxidiert. Dabei werden die energiereichen Moleküle NADH+H+ und FADH2 gebildet, deren Elektronen in der Atmungskette auf Sauerstoff übertragen werden.

Bei Eukaryonten läuft der Citratzyklus im Mitochondrium ab, bei Prokaryonten im Cytoplasma. Der Stoffwechselweg kann sich z. B. an Glykolyse und Oxidative Decarboxylierung anschließen

Bei NADH+H+ und FADH2 handelt es sich um Reduktionsäquivalente.

Als Reduktionsäquivalente bezeichnet man verschiedene Moleküle, die Elektronen übertragen können. Dazu gehört zum einen NAD+ (Nikotinamidadenindinukleotid). Durch Aufnahme von zwei Elektronen und einem Proton reagiert es zu NADH+H+. Für die reduzierte Form wird oft die kürzere Schreibweise NADH verwendet.

Ein weiteres Reduktionsäquivalent ist FAD (Flavinadenindinukleotid). Durch Aufnahme von zwei Elektronen und zwei Protonen wird es zu FADH2 reduziert.

Die Aufnahme von Elektronen (Reduktion) macht die Moleküle energiereicher und damit reaktiver.

Neben seiner zentralen Funktion im Energiestoffwechsel dient der Citratzyklus auch der Bereitstellung von Molekülen, die für verschiedene Synthesen verwendet werden können.

Das heißt, im Citratzyklus können also sowohl katabole (abbauende), als auch anabole (aufbauende) Reaktionen stattfinden.

Damit zu diesem Zweck entfernte Zwischenprodukte nicht den weiteren Ablauf des Citratzyklus verhindern, können sogenannte auffüllende Reaktionen stattfinden, die entfernte Moleküle wieder in den Zyklus einführen. Häufig dienen Aminosäuren dabei als Ausgangsprodukte.

Citratzyklus – Substrate

Wie schon angesprochen, werden im Citratzyklus die Endprodukte aus verschiedenen abbauenden Stoffwechselwegen zusammengeführt. Zu nennen sind der Fettsäurestoffwechsel (β-Oxidation), der Aminosäurestoffwechsel und der Kohlenhydratstoffwechsel. Sie alle produzieren den C2-Körper Acetyl-CoA.

Wenn dich die Stoffwechselwege vor dem Citratzyklus interessieren, wirf doch einen Blick in passende Artikel!

Kohlenhydratstoffwechsel

Werden Kohlenhydrate zur Energiegewinnung verwendet, läuft zunächst die Glykolyse ab, an deren Ende Pyruvat entsteht. Die Reaktion, die Pyruvat (C3-Körper) irreversibel in Acetyl-CoA (C2-Körper) überführt, nennt man Oxidative Decarboxylierung.Entscheidend hierfür ist der Pyruvatdehydrogenasekomplex, ein Multienzymkomplex aus drei Enzymen und fünf Coenzymen.Was ungefähr bei der oxidativen Decarboxylierung passiert, verrät Dir schon ihr Name:

1. Decarboxylierung: Eine Carboxylgruppe wird abgespalten und verlässt die Reaktion in Form von CO₂.

2. Oxidation: Eine verbliebene OH-Gruppe wird zur Carbonylgruppe (C=O).

3. Anhängen von Coenzym A: Coenzym A ist eine Nukleotidverbindung, die mit Acetat eine energiereiche Bindung eingeht. Dies ist von Vorteil, um die Acetylgruppe im Citratzyklus auf ein anderes Molekül zu übertragen. Man kann Acetyl-CoA so auch als aktivierte Form des Acetats betrachten.

Als Nebeneffekt wird bei der oxidativen Decarboxylierung Energie frei, die in Form von Elektronen auf das Reduktionsäquivalent NAD+ übertragen wird. Das entstehende NADH+H+ kann diese in der Atmungskette wieder abgeben, wo sie zur Bildung von ATP genutzt werden.

Fettsäurestoffwechsel

In der sogenannten β-Oxidation werden Fettsäuren nach Aktivierung mit Coenzym A ebenfalls zu Acetyl-CoA abgebaut. Bei längeren Fettsäuren läuft dieser Vorgang mehrfach hintereinander ab.

Auch in der β-Oxidation entstehen Reduktionsäquivalente, die in der Atmungskette Verwendung finden.

Aminosäurestoffwechsel

Aminosäuren sind Bestandteil von Proteinen, weshalb sie meistens mittels Proteolyse (enzymatischer Abbau von Proteinen) zunächst aus diesem Verband gelöst werden müssen. Anschließend können Aminosäuren auf verschiedene Weise weiterverwertet werden. Dabei schlägt ihr Kohlenstoffgerüst nach Abspaltung der Aminogruppe je nach Aminosäure unterschiedliche Wege ein.

Glucogene Aminosäuren können zu Pyruvat abgebaut werden, das Endprodukt der Glykolyse. Genauso können sie auch ohne größere Umwege als Metaboliten in den Citratzyklus eingeschleust werden.

Wegen der Möglichkeit, Aminosäuren in Zwischenprodukte des Citratzyklus umzuwandeln, sind sie die wesentlichen Substrate für auffüllende Reaktionen.

Ketogene Aminosäuren werden zu Acetyl-CoA abgebaut. Danach können sie zur Synthese von Ketonkörpern oder Fettsäuren, sowie im Citratzyklus zum Einsatz kommen. Rein ketogene Aminosäuren sind allerdings nur Lysin und Leucin.

Ketonkörper sind die drei Moleküle Acetoacetat, Aceton und β-Hydroxybutyrat. Sie werden bei Kohlenhydratmangel gebildet.

Citratzyklus Ablauf

Der Citratzyklus besteht aus acht Schritten, die bei ausreichendem Angebot von Metaboliten unbegrenzt oft hintereinander ablaufen könnten. Im Wesentlichen wird aus einem C6-Körper, der durch Einspeisung von Acetyl-CoA entsteht, ein C4-Körper. Bei diesem Prozess wird CO₂, sowie Energie (Elektronen) frei. Die Energie wird mithilfe der Reduktionsäquivalente NADH+H+ und FADH2 gespeichert und in die Atmungskette übertragen.

Grob lässt sich der Citratzyklus in zwei Phasen aufteilen. Während der erste Teil der Synthese und dem Abbau von Citrat dient, muss im zweiten Teil Oxalacetat als Ausgangsmolekül wiederhergestellt werden.

Keine Sorge, Du musst nicht jeden Schritt im Detail auswendig lernen.

1. Schritt: Citrat-Synthese

Reaktion: Das Acetyl-CoA und ein Wassermolekül reagieren mit dem C4-Körper Oxalacetat zu Citrat. Es handelt sich dabei um eine stark exergone Reaktion (es wird Energie abgegeben, das Gleichgewicht liegt auf der Seite des Produkts). Das frei werdende Coenzym A kann z. B. in der oxidativen Decarboxylierung recycelt werden.Enzym: CitratsynthaseZiel: Integration von Acetyl-CoA in den Citratzyklus.

2. Schritt: Isomerisation

Reaktion: Isocitrat, ein Isomer des Citrat, entsteht durch Verschiebung einer Hydroxygruppe an eine andere Position im Molekül. Die Reaktion ist zweistufig: Sie beginnt mit einer Dehydratisierung, bei der zunächst Wasser abgespalten wird. Dieses kann bei einer Hydratisierung an anderer Stelle wieder angefügt werden.

Isomere haben die gleiche Summenformel, aber eine andere Strukturformel. Die Atome sind im Molekül also verschieden angeordnet.

Enzym: Aconitase

Ziel: Die Isomerisierungsreaktion muss stattfinden, damit im Anschluss eine Decarboxylierung möglich ist.

3. Schritt: Oxidative Decarboxylierung

Reaktion: Auch der dritte Schritt des Citratzyklus ist zweischrittig. Als Erstes wird Isocitrat zu Oxalsuccinat oxidiert. Aus NAD+ entsteht NADH+H+. Bei der anschließenden Decarboxylierung wird alpha-Ketoglutarat gebildet und CO₂ freigesetzt. Das α-Ketoglutarat ist somit das eigentliche Endprodukt der Reaktion.Enzym: Isocitratdehydrogenase

Ziel: Vorbereitung der Übertragung von Coenzym A in Schritt vier.

Die Endung eines Enzyms gibt dir wichtige Hinweise auf die katalysierte Reaktion. Dehydrogenasen sind an Oxidationsreaktionen beteiligt, bei denen oft Protonen auf ein Reduktionsäquivalent wie NAD+ übertragen werden.

4. Schritt: Oxidative Decarboxylierung

Reaktion: Eine Carboxygruppe wird abgespalten (Decarboxylierung), wodurch CO2 frei wird. In einer Oxidationsreaktion entsteht aus NAD+ NADH+H+. Beides passiert, um Coenzym A (CoA) auf alpha-Ketoglutarat übertragen zu können. Dabei entsteht das Molekül Succinyl-CoA.

Enzym: α-Ketoglutarat-Dehydrogenase

Wie der Pyruvatdehydrogenasekomplex ist auch die α-Ketoglutarat-Dehydrogenase ein Multienzymkomplex, der sogar die gleichen Coenzyme nutzt. Streng genommen ist der Katalysator der vierten Reaktion also der α-Ketoglutarat-Dehydrogenase-Komplex. Die Reaktionsmechanismen der beiden Komplexe entsprechen einander.

Dies liegt nahe, wenn man weiß, dass sowohl Pyruvat als auch α-Ketoglutarat sogenannte α-Ketosäuren sind. So nennt man Carbonsäuren, die hintereinander eine Carboxygruppe und eine Ketogruppe besitzen.

Ziel: Wie Du schon von der Bildung von Acetyl-CoA weißt, sind Verbindungen mit Coenzym A sehr energiereich. Diese Energie kann man sich in der fünften Reaktion zunutze machen.

Das übergeordnete Ziel von allen Reaktionen, bei denen Reduktionsäquivalente entstehen, ist natürlich die Energiegewinnung in der Atmungskette.

5. Schritt: GTP Entstehung

Reaktion: Die Energie aus der energiereichen Bindung mit Coenzym A aus Succinyl-CoA wird genutzt, um einen Phosphatrest auf GDP zu übertragen. Dadurch entsteht der Energieträger GTP und das Coenzym A wird frei. Zurück bleibt Succinat.Enzym: Succinyl-CoA-Synthetase

Ziel: Unter anderem die direkte Entstehung eines energiereichen, nutzbaren Moleküls (ansonsten trägt der Citratzyklus nur indirekt zur Energieerzeugung bei).

GTP kann in ATP umgewandelt werden, die beiden Moleküle sind also energetisch äquivalent. In Form von GTP kann es in intrazellulären Signalwegen eingesetzt werden.

6. Schritt: Redoxreaktion

Reaktion: In einer Redoxreaktion wird Succinat zu Fumarat oxidiert und FAD zu FADH2 reduziert.Enzym: Succinatdehydrogenase

Die Succinatdehydrogenase ist im Gegensatz zu den anderen Enzymen des Citratzyklus in der Mitochondrienmembran fixiert. Dort fungiert es als Komplex II der Atmungskette.

Ziel: Schrittweise Rückformung zu Oxalacetat.

7. Schritt: Hydratisierung

Reaktion: Fumarat reagiert mit Wasser zu Malat.Enzym: Fumarathydratase, auch Fumarase genannt.

Ziel: Schrittweise Rückformung zu Oxalacetat.

8. Reaktion: Redoxreaktion

Reaktion: Bei der Umwandlung von Malat in Oxalacetat entsteht erneut NADH+H+ aus NAD+.Enzym: MalatdehydrogenaseZiel: Es muss wieder Oxalacetat gebildet werden, damit der Zyklus von vorn beginnen kann.

Citratzyklus Merksatz

Dieser Satz kann dir als Merkhilfe dienen, damit du die einzelnen Schritte des Citratzyklus besser in Erinnerung behältst:

„Citronen im Koma sind super für meine Oma.“

SatzAnfangsbuchstabeReihenfolge Citratzyklus
CitronenCCitrat
imIIsocitrat
KomaKα-Ketoglutarat
sindSSuccinyl-CoA
superSSuccinat
fürFFumarat
meineMMalat
OmaOOxalacetat

Citratzyklus Bilanz

Nachdem Du nun die einzelnen Schritte des Citratzyklus kennengelernt hast, hier noch einmal ein Überblick als Reaktionsgleichung:

Acetyl-CoA + FAD+ + 3 NAD++2 H2O+GDP+P2 CO2 +FADH2 + 3 NADH+3H++GTP+CoA

Im Citratzyklus wird immer wieder Oxalacetat gebildet, das erneut mit Acetyl-CoA reagieren kann. Die für die Energiegewinnung bedeutsamen Endprodukte sind die Reduktionsäquivalente FADH2 und NADH+H+. Sie übertragen Elektronen auf die Komplexe der Atmungskette, wo sie zusammen mit 2 H+ schließlich mit Sauerstoff zu Wasser reagieren. Außerdem trägt die Übertragung der Elektronen auf die Komplexe zum Aufbau eines Protonengradienten über die innere Mitochondrienmembran bei, der zur ATP-Generierung unerlässlich ist.

Mithilfe eines Moleküls NADH+H+ können in der Atmungskette 2,5 ATP generiert werden. Für FADH2 sind es 1,5 ATP. Zusammen mit dem direkt erzeugten GTP liegt die Bilanz des Citratzyklus für einen Durchlauf bei etwa 10 ATP.

Es kann sinnvoll sein, bei der Energiebilanz von einem Molekül Glucose auszugehen. In der Glykolyse entstehen daraus zwei Moleküle Pyruvat. Folglich gibt es auch das Acetyl-CoA gleich zweimal, wodurch sich die Ausbeute des Citratzyklus auf 20 ATP verdoppelt.

Citratzyklus Regulation

Wie fast jede Reaktion des Körpers läuft auch der Citratzyklus nicht unkontrolliert ab. Genau wie die Glykolyse ist die Regulation des Citratzyklus mit dem Energiehaushalt der Zelle gekoppelt.

Eine Regulation, die an die Energieladung einer Zelle angepasst ist, kannst Du dir vorstellen wie die Küche in einem Restaurant.

An manchen Tagen gibt es viele Gäste mit großem Hunger, entsprechend muss viel gekocht werden. An anderen Tagen ist der Andrang nicht ganz so groß oder die Menschen sind schon satt und bestellen weniger. Die Köche sind dann nicht ganz so ausgelastet.

Übertragen bedeutet das: Produkte, die eine hohe Energieladung der Zelle anzeigen (NADH+H+, ATP), inhibieren den Citratzyklus, während Moleküle, die eine niedrige Energieladung anzeigen (NAD+, ADP) ihn aktivieren. So kann die Zelle in verschiedenen Situationen optimal versorgt werden.

Natürlich gibt es noch weitere Möglichkeiten der Regulation. Dazu gehört unter anderem ein hohes Angebot an Acetyl-CoA (Aktivierung) oder Citrat (Inhibition).

Citratzyklus – Das Wichtigste

  • Der Citratzyklus ist Teil der aeroben Zellatmung und läuft im Cytoplasma der Prokaryoten und in der Matrix der Mitochondiren in Eukaryoten ab. Er schließt sich an die oxidative Decarboxylierung (Pyruvatoxidation) nach der Glykolyse an.
  • Außer am Kohlenhydratstoffwechsel ist der Citratzyklus auch am Fettsäure- und Aminosäurestoffwechsel beteiligt.
  • Der Citratzyklus ist nicht nur katabol, sondern auch anabol: Er dient auch Bereitstellung von Molekülen für verschiedene Synthesen.
  • Acetyl-CoA wird im Citratzyklus verwendet, um 3 NADH+H+, 1 FADH und 1 GTP zu synthetisieren.
  • An den Citratzyklus schließt sich die Atmungskette an, weshalb pro Molekül Acetyl-CoA 10 ATP entstehen können.

Nachweise

  1. https://www.u-helmich.de/bio/Stoffwechsel/reihe3/2-Citratzyklus/
  2. viamedici.thieme.de: Citratzyklus: Reaktionen. (07.07.22)

Häufig gestellte Fragen zum Thema Citratzyklus

Im Citratzyklus wird aus einem C6-Körper, der durch Einspeisung von Acetyl-CoA (z. B. aus der Glykolyse) entsteht, ein C4-Körper. Bei diesem Prozess wird CO₂, sowie Energie frei. Die Energie wird mithilfe der Reduktionsäquivalente NADH und FADH2 gespeichert und in die Atmungskette übertragen.

Der Name Citratzyklus bezieht sich auf eines der Zwischenprodukte des Citratzyklus, das Citrat. Ein anderer Name des Citratzyklus ist Krebs-Zyklus.


Der Citratzyklus ist aerob, also von Sauerstoff abhängig, da die entstehenden Reduktionsäquivalente (z. B. NADH+H+) ihre Elektronen auf die Atmungskette abgeben, wo sie kontrolliert auf Sauerstoff übertragen werden. Sauerstoff ist notwendig, um in der Atmungskette ATP zu generieren.

Wie oft der Citratzyklus abläuft, ist von der Energieladung der Zelle und von den verfügbaren Substraten abhängig. Ist wenig Energie vorhanden, läuft der Citratzyklus häufiger ab. Pro Molekül Glucose muss der Citratzyklus außerdem beispielsweise zweimal ablaufen, da aus zwei Molekülen Pyruvat auch zwei Moleküle Acetyl-CoA entstehen.

Finales Citratzyklus Quiz

Citratzyklus Quiz - Teste dein Wissen

Frage

Was passiert im Citratzyklus?

Antwort anzeigen

Antwort

Im Citratzyklus wird Acetyl-CoA als Produkt der Glykolyse verwendet und in energiereiche Stoffe umgewandelt. Hierzu werden Moleküle neu gebunden, abgespalten und andere hinzugefügt.

Frage anzeigen

Frage

Woher kommt der Name Citratzyklus?

Antwort anzeigen

Antwort

Der Name "Citratzyklus" stammt vom Citrat, dass benötigt wird, damit der Kreislauf erst beginnt. Diese entsteht durch das Produkt der Glykolyse Acetyl-CoA und das Endprodukt des Citratzykluses Oxalacetat.

Frage anzeigen

Frage

Wie oft läuft der Citratzyklus ab?

Antwort anzeigen

Antwort

Der Citratzyklus läuft insgesamt nach jeder Glykolyse zwei mal ab, da nach jeder Glykolyse von je einem Glucose-Molekül zwei Pyruvat-Moleküle entstehen.

Frage anzeigen

Frage

Welche ATP-Bilanz hat der Citratzyklus?

Antwort anzeigen

Antwort

10 ATP

Frage anzeigen

Frage

Aus welchen Endprodukten des Citratzykluses kann ATP gewonnen werden?

Antwort anzeigen

Antwort

Aus einem Molekül NADH kann durch die Atmungskette, welche nach dem Citratzyklus stattfindet, 2,5 ATP gewonnen werden. Des weiteren kann aus jedem FADH2-Molekül etwa 1,5 ATP gewonnen werden. Zudem ist GTP energetisch gleich zu ATP, weshalb nach der Atmungskette 1 ATP vorliegt. So liegt die Bilanz des Citratzykluses bei etwa 10 ATP-Molekülen.

Frage anzeigen

Frage

Welche Synonyme gibt es für den Citratzyklus?

Antwort anzeigen

Antwort

Der Citratzyklus ist auch als Krebs-Zyklus, Citronensäure-Zyklus oder Tricarbonsäurezyklus bekannt. 

Frage anzeigen

Frage

Wann findet der Citratzyklus statt?

Antwort anzeigen

Antwort

Der Citratzyklus läuft zeitlich gesehen während der aeroben Zellatmung, nach der Glykolyse ab.

Frage anzeigen

Frage

In welche zwei Phasen kann der Citratzyklus unterteilt werden?

Antwort anzeigen

Antwort

  1. Abbau von Citrat
  2. Wiederherstellung von Oxalacetat

Frage anzeigen

Frage

Was ist die Grundlage für den Citratzyklus?

Antwort anzeigen

Antwort

Vor dem Citratzyklus muss die Glykolyse abgelaufen sein, da während der Glykolyse das Abfallprodukt Pyruvat entsteht. Dieses ist wichtig für den Citratzyklus. In der Pyruvatoxidation geht aus Pyruvat das Molekül Acetyl-CoA hervor. Dieses kann später mit Oxalacetat in Citrat umgewandelt werden.

Frage anzeigen

Frage

Wie lautet der Merksatz, mit dem man sich die Schritte des Citratzykluses besser merken kann?

Antwort anzeigen

Antwort

"Citronen im Koma sind super für meine Oma."

Frage anzeigen

Frage

Welches Enzym katalysiert die Reaktion von Malat in Oxalacetat?

Antwort anzeigen

Antwort

Die Reaktion wird von dem Enzym Malat-Dehydrogenase katalysiert.

Frage anzeigen

Frage

Welches Enzym katalysiert die Reaktion von Succinat in Fumarat?

Antwort anzeigen

Antwort

Succinat-Dehydrogenase

Frage anzeigen

Frage

Wie entsteht Citrat zu Beginn des Citratzykluses?

Antwort anzeigen

Antwort

Citrat entsteht, indem sich die Doppelbindung zwischen Sauerstoff- und Kohlenstoffatom beim Oxalactetat öffnet. Dies führt dazu, das ein neuer Bindungsplatz bereitsteht, an dem sich ein Wasserstoffion (H+) anlagert. Das Coenzym A (CoA-SH) verlässt die Reaktion und es bleibt letztendlich nur der Stoff Citrat übrig, nachdem der Zyklus benannt ist.

Frage anzeigen

Frage

Wie viele Kohlenstoffatome hat Citrat?

Antwort anzeigen

Antwort

Citrat besitzt 6 Kohlenstoffatome.

Frage anzeigen

Frage

Was ist die Funktion des Citratzyklus?

Antwort anzeigen

Antwort

Acetyl-CoA wird zu Cooxidiert und dabei die energiereichen Reduktionsäquivalente NADH und FADHgebildet. Sie werden für die ATP-Gewinnung in der Atmungskette benötigt.

Frage anzeigen

Frage

Was sind Reduktionsäquivalente?

Antwort anzeigen

Antwort

Als Reduktionsäquivalente bezeichnet man verschiedene Moleküle, die Elektronen übertragen können. Dazu gehören NAD+ und FAD, die zu NADH+H+ und FADH2 reduziert werden. Die Aufnahme von Elektronen macht sie energiereicher. In der Atmungskette dienen sie dem Aufbau eines elektrochemischen Gradienten.

Frage anzeigen

Frage

Welche Funktion außerhalb des Energiestoffwechsels erfüllt der Citratzyklus?

Antwort anzeigen

Antwort

Bereitstellung von Molekülen, die für verschiedene Synthesen verwendet werden können (neben kataboler auch anabole Funktion)

Frage anzeigen

Frage

Woher kann das Acetyl-CoA für den Citratzyklus stammen?

Antwort anzeigen

Antwort

  • Kohlenhydratstoffwechsel (Glykolyse)
  • Fettsäurestoffwechsel (β-Oxidation)
  • Aminosäurestoffwechsel (z. B. aus Proteolyse)

Frage anzeigen

Frage

Nach dem Citratzyklus wird aus einem...

Antwort anzeigen

Antwort

C6-Körper ein C4-Körper

Frage anzeigen

Frage

In welche zwei Phasen kann man den Citratzyklus funktionell einteilen?

Antwort anzeigen

Antwort

  1. Phase: Synthese und Abbau von Citrat
  2. Phase: Wiederherstellung von Oxalacetat als Ausgangsmolekül

Frage anzeigen

Frage

Was ist die Energiebilanz des Citratzyklus (pro Molekül Acetyl-CoA)?

Antwort anzeigen

Antwort

10 ATP

Frage anzeigen

Frage

Nach welchem Prinzip wird der Citratzyklus reguliert?

Antwort anzeigen

Antwort

  • Regulation ist mit dem Energiehaushalt der Zelle gekoppelt
  • hohe Energieladung der Zelle (angezeigt durch NADH, ATP) hemmt den Citratzyklus, niedrige Energieladung wirkt entsprechend umgekehrt
  • auch das Angebot an Substraten und Produkten wirken sich auf die Aktivität aus

Frage anzeigen

Frage

Wo läuft der Citratzyklus ab?

Antwort anzeigen

Antwort

Bei Eukaryonten läuft der Citratzyklus im Mitochondrium ab, bei Prokaryonten im Cytoplasma.

Frage anzeigen

Frage

Was muss das Endprodukt der Glykolyse, Pyruvat, durchlaufen, um im Citratzyklus verwendet werden zu können?

Antwort anzeigen

Antwort

oxidative Decarboxylierung (Entstehung von Acetyl-CoA)

Frage anzeigen

Frage

Aus welchen Molekülen wird Citrat gebildet?

Antwort anzeigen

Antwort

Oxalacetat und Acetyl-CoA

Frage anzeigen

Frage

Welche Zwischenprodukte gibt es beim Citratzyklus?

Antwort anzeigen

Antwort

  • Citrat
  • Isocitrat
  • α-Ketoglutarat
  • Succinyl-CoA
  • Succinat
  • Fumarat
  • Malat
  • Oxalacetat


Merksatz:

„Citronen im Koma sind super für meine Oma.“

Frage anzeigen

Frage

Wie wird der Citratzyklus noch genannt?

Antwort anzeigen

Antwort

Krebs-Zyklus oder Zitronensäurezyklus

Frage anzeigen

Frage

Was sind häufige Ausgangsprodukte für auffüllende Reaktionen des Citratzyklus?

Antwort anzeigen

Antwort

Aminosäuren können als Substrate für auffüllende Reaktionen dienen, wenn Moleküle für andere Synthesen entfernt wurden

Frage anzeigen

Frage

Wie heißt der entscheidende Enzymkomplex der oxidativen Decarboxylierung?

Antwort anzeigen

Antwort

Pyruvatdehydrogenasekomplex

Frage anzeigen

Teste dein Wissen mit Multiple-Choice-Karteikarten

Welche ATP-Bilanz hat der Citratzyklus?

Welches Enzym katalysiert die Reaktion von Succinat in Fumarat?

Nach dem Citratzyklus wird aus einem...

Weiter

Karteikarten in Citratzyklus29

Lerne jetzt

Was passiert im Citratzyklus?

Im Citratzyklus wird Acetyl-CoA als Produkt der Glykolyse verwendet und in energiereiche Stoffe umgewandelt. Hierzu werden Moleküle neu gebunden, abgespalten und andere hinzugefügt.

Woher kommt der Name Citratzyklus?

Der Name "Citratzyklus" stammt vom Citrat, dass benötigt wird, damit der Kreislauf erst beginnt. Diese entsteht durch das Produkt der Glykolyse Acetyl-CoA und das Endprodukt des Citratzykluses Oxalacetat.

Wie oft läuft der Citratzyklus ab?

Der Citratzyklus läuft insgesamt nach jeder Glykolyse zwei mal ab, da nach jeder Glykolyse von je einem Glucose-Molekül zwei Pyruvat-Moleküle entstehen.

Welche ATP-Bilanz hat der Citratzyklus?

10 ATP

Aus welchen Endprodukten des Citratzykluses kann ATP gewonnen werden?

Aus einem Molekül NADH kann durch die Atmungskette, welche nach dem Citratzyklus stattfindet, 2,5 ATP gewonnen werden. Des weiteren kann aus jedem FADH2-Molekül etwa 1,5 ATP gewonnen werden. Zudem ist GTP energetisch gleich zu ATP, weshalb nach der Atmungskette 1 ATP vorliegt. So liegt die Bilanz des Citratzykluses bei etwa 10 ATP-Molekülen.

Welche Synonyme gibt es für den Citratzyklus?

Der Citratzyklus ist auch als Krebs-Zyklus, Citronensäure-Zyklus oder Tricarbonsäurezyklus bekannt. 

Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!

Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.

  • Karteikarten & Quizze
  • KI-Lernassistent
  • Lernplaner
  • Probeklausuren
  • Intelligente Notizen
Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App! Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!

Finde passende Lernmaterialien für deine Fächer

Melde dich an für Notizen & Bearbeitung. 100% for free.

Fang an mit StudySmarter zu lernen, die einzige Lernapp, die du brauchst.

Jetzt kostenlos anmelden
Illustration