StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
Americas
Europe
Das Hardy-Weinberg-Gesetz ist ein Grundgesetz der Genetik. Die zentrale Aussage dieses Gesetzes ist: Allein durch Rekombination ändert sich die genetische Struktur einer Population im Laufe der Generationen nicht. Das bedeutet, es findet keine Evolution unter diesen Bedingungen statt. Es handelt sich hierbei um ein Gedankenexperiment, welches in der realen Welt nicht eintritt. Hierfür sind unter natürlichen Bedingungen nicht die entsprechenden…
Entdecke über 200 Millionen kostenlose Materialien in unserer App
Speicher die Erklärung jetzt ab und lies sie, wenn Du Zeit hast.
SpeichernLerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmeldenDas Hardy-Weinberg-Gesetz ist ein Grundgesetz der Genetik. Die zentrale Aussage dieses Gesetzes ist: Allein durch Rekombination ändert sich die genetische Struktur einer Population im Laufe der Generationen nicht. Das bedeutet, es findet keine Evolution unter diesen Bedingungen statt. Es handelt sich hierbei um ein Gedankenexperiment, welches in der realen Welt nicht eintritt. Hierfür sind unter natürlichen Bedingungen nicht die entsprechenden Umstände gegeben.
Evolution ist der Prozess, durch den sich Populationen von Organismen im Laufe der Zeit verändern und sich an ihre Umwelt anpassen.
In der Populationsgenetik werden Vererbungswege innerhalb einer Population untersucht. Die Populationsgenetik erforscht die Veränderungen der Genfrequenz durch Mutation, Selektion, Gendrift, Isolation und Genfluss. Diese Einflüsse kennt man auch als Evolutionsfaktoren.
Die Populationsgenetik untersucht zum Beispiel, wie häufig bestimmte Allele in einer Population zu finden sind. Sie untersucht auch die Änderungen der Allelfrequenzen und die Faktoren, die dazu geführt haben.
Der wichtigste Grundsatz der Populationsgenetik ist das Gesetz von Hardy und Weinberg von 1908. Das sogenannte Hardy-Weinberg-Gesetz, oder auch Hardy-Weinberg-Equilibrium.
Godfrey Harold Hardy, geboren am 7. Februar 1877, war ein britischer Mathematiker. G. H. Hardy arbeitete in den mathematischen Gebieten der Analysis und der Zahlentheorien. Wilhelm Weinberg, geboren am 25. Dezember 1862, war ein deutscher Arzt, Vererbungsforscher und Statistiker.
Mit seinen Forschungen leistete Weinberg seinen Beitrag zur Populationsgenetik und Zwillingsforschung. Das nach Weinberg und Hardy benannte Gesetz, stellt heute die Grundsteine der Populationsgenetik dar.
Um die Allelfrequenz zu verstehen, solltest Du zunächst einige andere Begriffe verstehen.
Chromosomen befinden sich im Zellkern. Sie tragen alle genetischen Informationen eines Organismus. Der Mensch hat 46 Chromosomen, davon sind 44 Autosomen und die anderen zwei sind Geschlechtschromosomen, die Gonosomen genannt werden.
Homologe Chromosomen sind alle Autosomenpaare, die mit einem anderen Chromosom in Aussehen und Aufbau der Gene zum Großteil übereinstimmen.
Allele sind verschiedene Variationen von Genen, die unterschiedliche Merkmale ausdrücken. Allele befinden sich an bestimmten Stellen auf Chromosomen.
Ein Allel kann beispielsweise für die Ausprägung von Augen- oder Haarfarben verantwortlich sein. Ein weiteres Beispiel wäre die Ausprägung von Blütenfarben.
Die Allelfrequenz, oder Allelhäufigkeit, ist ein Begriff der Populationsgenetik und beschreibt die relative Häufigkeit eines spezifischen Allels in einer Population. Die Allelfrequenz lässt sich mit einer leichten Gleichung bestimmen:
Allelfrequenz = Zahl der Kopien eines bestimmten Allels ÷ Gesamtzahl der Kopien aller Allele in der Population
Allelfrequenz einer Rattenpopulation
Die Population beinhaltet 1000 Tiere. 180 Tiere haben den Genotyp SW, 810 Tiere den Genotyp SS und 10 Tiere den Genotyp WW (S = schwarz, W = weiß, SW= grau (intermediär))
Bei 100 Tieren sind je zwei Allele vorhanden. Deswegen sind insgesamt 2000 Allele vorhanden. Das Allel S kommt 180 Mal vor und das Allel W kommt in 20 Mal vor.
Somit ist die Häufigkeit von den Allelen von S: 1800 ÷ 2000 = 0,9
Die Häufigkeit vom W-Allel ist: 200 ÷ 2000 = 0,1
In Prozent ausgedrückt sind das 90 % S und 10 % W. Hier merken wir, dass S + W immer 100 % ergeben. Man kann es auch so berechnen: S = 1 – W
In der Literatur werden für einige Allelfrequenzen die Buchstaben q und p verwendet.
Das Hardy-Weinberg-Gesetz besagt, dass es in einer sogenannten idealen Population eine relative Allelfrequenz gibt. Die Allelfrequenz soll laut dem Gesetz über Generationen hinweg unverändert bleiben.
Eine ideale Population existiert unter natürlichen Bedingungen nicht!
Das Gesetz geht davon aus, dass es an einer ganz bestimmten Genstelle zwei verschiedene Allele gibt. Sie sind normalerweise mit “p” und “q” gekennzeichnet. Da nur diese beiden Allele existieren, ist ihre Summe: . Wenn das entsprechende menschliche Gen zwei Kopien pro Autosom hat, sind die Häufigkeiten der drei möglichen Genotypen auf eine binominale Beziehung zurückzuführen: .
Hardy-Weinberg-Gesetz am Beispiel einer Rattenpopulation.
Eine Rattenpopulation beinhaltet 1000 Tiere.
Es existieren wegen eines intermediären Erbgangs drei Phänotypen in der Population:
Wir übernehmen die Allelfrequenzen aus unserer vorigen Rechnung des letzten Beispiels:
Die Frequenz des S-Allels ist: 0,9 (= 90 %)
Die Frequenz des W-Allels ist: 0,1 (= 10 %)
In jedem Sommer sollen sich die Individuen der Population unbegrenzt miteinander fortpflanzen können. Unbegrenzt bedeutet in diesem Fall, dass alle Individuen gleich fit sind und somit die gleichen Fortpflanzungschancen haben.
Man kann jetzt ein gedankliches Experiment führen:
Nun können die Wahrscheinlichkeiten für die Allelkombinationen der Nachkommen berechnet werden. Die Wahrscheinlichkeit basiert darauf, welche zwei Allele kombiniert werden können und in welcher Allelfrequenz die Allele in der Population vorhanden sind.
Wahrscheinlichkeit der Allelkombinationen | Häufigkeit der Nachkommen (Genotyp) |
SS = p2 = 0,9 · 0,9 = 0,81 | 0,81 (= 81 %) |
SW = p · q = 0,9 · 0,1 = 0,09WS = q · p = 0,1 · 0,9 = 0,09 | 0,09 + 0,09 = 0,18 (= 18 %) |
WW = q · q = 0,1 · 0,1 = 0,01 | 0,01 (= 1 %) |
Gesetz der Wahrscheinlichkeit der Keimzellenbildung: .
In der Tochter-Generation entstehen folgende Wahrscheinlichkeiten:
Nach dem Hardy-Weinberg-Gesetz sollte die Allelfrequenz in der Tochter-Generation dieselbe sein wie in der Elternpopulation. Anhand folgender Rechnung wird dies nun überprüft:
Es wird davon ausgegangen, dass die Tochter-Generation aus 4000 Individuen besteht. Anhand unserer berechneten Wahrscheinlichkeiten würden also folgende Individuenzahlen der verschieden Genotypen vorliegen.
Nun berechnen wir erneut die Allelfrequenzen der Allele S und W:
Da die Allelfrequenzen in der Tochter-Generation genau die gleichen sind wie in der Eltern-Generation, es handelt sich hier um das Hardy-Weinberg Equilibrium.
Damit das Hardy-Weinberg-Gesetz anwendbar ist, muss eine sogenannte ideale Population vorliegen. Damit eine ideale Population vorliegt, müssen einige Bedingungen erfüllt sein. Innerhalb dieser idealen Population dürfen keine Mutationen, keine natürliche Selektion oder Genfluss stattfinden. Außerdem sollen sich die Individuen zufällig paaren. Eine ideale Population kann auch nur eine große Population sein.
Diese Umstände können unter natürlichen Bedingungen nicht eintreten!
In einer idealen Population entstehen keine neuen Allele. In der Realität treten bei Individuen einer Population immer zufällige Mutationen in den Genen auf. Diese können den Genpool verändern, indem neue Allele entstehen.
In der idealen Population des Hardy-Weinberg-Gesetzes treten keinerlei Mutationen auf, sonst wäre die Gleichung nicht anwendbar.
Die sogenannte Panmixie ist eine weitere Voraussetzung für eine ideale Population. Die Panmixie besagt, dass alle Individuen einer Art, unabhängig von ihrem Genotyp, die gleichen Fortpflanzungschancen haben. In der Realität ist die Wahl des Geschlechtspartners nie rein zufällig und daher ist eine Panmixie nicht möglich.
Laut dem Hardy-Weinberg-Gesetz kann keine natürliche Selektion in der idealen Population stattfinden. Alle Individuen einer Population müssen gleich fit sein und dieselben Chancen aufs Überleben haben. Nur so können die Allelhäufigkeiten konstant bleiben.
In der Realität ist die natürliche Selektion ein wichtiger Evolutionsfaktor. Sie verändert das Erbgut innerhalb einer Population abhängig von den gegebenen Umweltbedingungen, damit günstigere Allele vererbt werden und sich in der Population etablieren.
Eine weitere Bedingung des Hardy-Weinberg-Gesetzes ist eine große Individuenzahl der Population. Die Population muss so groß sein, dass Zufallsschwankungen keine Auswirkungen haben.
Damit das Hardy-Weinberg-Gesetz angewendet werden kann, muss eine genetische Isolation der Population vorliegen. Das heißt, es gibt keine Zu- oder Abwanderungen von anderen Populationen derselben Art. Der Genfluss zwischen den Populationen ist unterbrochen.
Durch Zu- oder Abwanderung würden sich auch die Allele der Population verändern und das Hardy-Weinberg-Gesetz würde an Gültigkeit verlieren.
Das Hardy-Weinberg-Gesetz besagt, dass die Allelfrequenz innerhalb einer Population von Generation zu Generation unverändert bleibt. In einer solchen Population haben Evolutionsfaktoren kein Einfluss auf die Individuen.
Die Allelfrequenz, oder Allelhäufigkeit, ist ein Begriff der Populationsgenetik und beschreibt die relative Häufigkeit eines spezifischen Allels in einer Population. Die Allelfrequenz lässt sich mit einer leichten Gleichung bestimmen:
Allelfrequenz = Zahl der Kopien eines bestimmten Allels ÷ Gesamtzahl der Kopien aller Allele in der Population
Eine ideale Population stellt eine unendlich große Population dar. Innerhalb dieser Population gibt es keine Migration, Mutationen, Selektion, Gendrift oder Genfluss. Außerdem haben alle Individuen die gleiche Wahrscheinlichkeit, Partner zur Paarung zu finden. Die Verpaarung ist dadurch zufällig. Eine ideale Population existiert in der Realität nicht.
Das Hardy-Weinberg-Gesetz gibt Hinweise auf Evolutionsprozesse. Durch die Gleichung kann veranschaulicht werden, wie stark eine Population durch Evolutionsfaktoren beeinflusst wurde.
Außerdem wird das Hardy-Weinberg-Gesetz in der Medizin angewandt, um Erbkrankheiten zu untersuchen. Somit können Ärzte ermitteln, wie viele Individuen einer Bevölkerung das Allel für eine bestimmte Krankheit haben.
Wie möchtest du den Inhalt lernen?
Wie möchtest du den Inhalt lernen?
Kostenloser biologie Spickzettel
Alles was du zu . wissen musst. Perfekt zusammengefasst, sodass du es dir leicht merken kannst!
Sei rechtzeitig vorbereitet für deine Prüfungen.
Teste dein Wissen mit spielerischen Quizzes.
Erstelle und finde Karteikarten in Rekordzeit.
Erstelle die schönsten Notizen schneller als je zuvor.
Hab all deine Lermaterialien an einem Ort.
Lade unzählige Dokumente hoch und habe sie immer dabei.
Kenne deine Schwächen und Stärken.
Ziele Setze dir individuelle Ziele und sammle Punkte.
Nie wieder prokrastinieren mit unseren Lernerinnerungen.
Sammle Punkte und erreiche neue Levels beim Lernen.
Lass dir Karteikarten automatisch erstellen.
Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.
Melde dich an für Notizen & Bearbeitung. 100% for free.
Speichere Erklärungen in deinem persönlichen Bereich und greife jederzeit und überall auf sie zu!
Mit E-Mail registrieren Mit Apple registrierenDurch deine Registrierung stimmst du den AGBs und der Datenschutzerklärung von StudySmarter zu.
Du hast schon einen Account? Anmelden